Differential Binding Properties of GalNAc and/or Gal Specific Lectins

  • Albert M. Wu
  • Shunji Sugii
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 228)


The binding properties of lectins have been used to study the structural and functional role of cell surface carbohydrates (1–6), to detect sugar moieties on normal and neoplastic cell surfaces (1), to isolate mutants resistant to the cytotoxic action of some lectins (7–10), and to isolate and characterize glycoconjugates (5, 11–13A). This group of lectins generally recognize D-pyranose sugars, and require configurational and structural complementarity of sugars for interaction to occur. All lectin molecules have more than two carbohydrate binding sites, a property resulting in their ability to agglutinate cells or to precipitate complex carbohydrates (1,4,14,15). Until the early seventies, the carbohydrate specificities of lectins, were determined by the ability of monosaccharides or their glycosides to inhibit lectin-induced hemagglutination (2,14,17,18). In the early eighties, lectins of the same apparent monosaccharide specificity were found to demonstrate different reactivities toward different oligosaccharide chains, and differential affinities to animal cells and glycoproteins, implying that they have their own binding specificity extending beyond the monosaccharide (1–4,14,18).


Blood Group Immunochemical Study Specific Lectin Human Blood Group Carbohydrate Side Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.













2-acetamido-2-deoxy-D-glucopyranose; (GlcNAcß1→4) n repeating unit of GlcNAcß1→4GlcNAc




carbohydrate residues; Melibiose Galαl→6Glc

Raffinose, Galαl→6Glcß1→2Fruf

Stachyose Galαl→6Galαl→6Glcß1→2Fruf


blood group active glycoproteins (substances)


Quantitative precipitin assay


Quantitative precipitin-inhibition assay






GalNAcαl→3 [LFucαl→2] Gal related


Galß1→3GalNAcαl→Ser (Thr) of proteincore or Galß1→3GaINAcß1→ at the terminal nonreducing end of the ganglioside


GaINAcαl→Ser(Thr) of the peptide chain


Human blood groups type I and II carbohydrate sequence, Galß1→3(4)GlcNAc at the nonreducing end of the carbohydrate chain (17A)


Galßl→3Gal at the nonreducing end of the carbohydrate chain


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nicolson, G.L. (1974) The interaction of lectins with animal cell surfaces, Int. Rev. Cytol., 39:89–190.PubMedCrossRefGoogle Scholar
  2. 2.
    Goldstein, I.J. and Poretz, R.D. Isolation, physio- chemical characterization, and carbohydrate binding specificity of lectins. In: “The Lectins, Properties, Functions and Applications in Biology and Medicine,” (Liener, I.E., Sharon, N., and Goldstein, I.J. eds.), Academic Press, pp. 33–247.Google Scholar
  3. 3.
    Lis, H. and Sharon, N. (1974) Lectins: their chemistry and application to immunology, In: “The Antigens”, (Sela, M., ed.), Academic Press, New York, Vol 4., pp. 429–529.Google Scholar
  4. 4.
    Lis, H. and Sharon, N. (1986) Lectins as molecules and as tools. Ann. Rev. Biochem., 55:35–67.PubMedCrossRefGoogle Scholar
  5. 5.
    Pereira, M.E.A. and Kabat, E.A. (1979) Immunochemical studies on lectins and their application to the fractionation of blood group substances and cells. Crit. Rev. Immunol., 1:33–78.Google Scholar
  6. 6.
    Kimura, A., Wigzell, H., Holmquist, G., Ersson, B., and Carlson, G. (1979) Selective affinity fractionation of murine cytotoxic T lymphocyte (CTL) — Unique lectin specific binding of the CTL associated surface glycoproteins, T 145., J. Exp. Med., 149:473–484.PubMedCrossRefGoogle Scholar
  7. 7.
    Stanley, P. (1980) Surface carbohydrate alterations of mutant mammalian cells selected for resistance to plant lectins. In: “The Biochemistry of Glycoproteins and Proteoglycans,” (Lennarz, W.J., ed.), Plenum Press, New York and London, pp. 161–189.Google Scholar
  8. 8.
    Stanley, P.(1983) Lectin-resistant CHO cells: Selection of new mutant phenotypes. Somatic Cell Genetics, 9:593-608.PubMedCrossRefGoogle Scholar
  9. 9.
    Stanley, W.S., Peters, B.P., Blake, D.A., Yep, D., Chu, E.H.Y., and Goldstein, I.J. (1979) Interaction of wild- type and variant mouse 3T3 cells with lectins from Bandeiraea simplicifolia seeds. Proc. Natl. Acad. Sci. U.S.A., 76:303–307.PubMedCrossRefGoogle Scholar
  10. 10.
    Briles, E.B., Li, E., anornfeld, S. (1977) Isolation of wheat germ agglutinin-resistant clones of Chinese hamster ovary cells deficient in membrane sialic acid and galactose. J. Biol. Chem., 252:1107–1116.PubMedGoogle Scholar
  11. 11.
    Kristiansen, T. (1974) Group-specific separation of glycoproteins. Meth. Enzymol., 34 (B):331–341.PubMedCrossRefGoogle Scholar
  12. 12.
    Pereira, M.E.A. and Kabat, E.A. (1976) Immunochemical studies on blood groups. LXII. Fractionation of hog and human A, H, and AH blood group active substance on insoluble immunoadsorbents of Dolichos and Lotus lectins. J. Exp. Med., 143:422–436.PubMedCrossRefGoogle Scholar
  13. 13.
    Watkins, W.M. (1972) Blood-group specific substances In: Glycoproteins (Gottschalk, A., ed.) 2nd ed., Part B, pp. 830–891. Elsevier, Amsterdam.Google Scholar
  14. 13A.
    Merkle, R.K. and Cumming, R.D. (1987) Lectin affinity chromatography of glycopeptides. Meth. Enzymol., 138:232–259.PubMedCrossRefGoogle Scholar
  15. 14.
    Gallagher, J.T. (1984) Carbohydrate-binding properties of lectins: a possible approach to lectin nomenclature and classification. Biosci. Rep., 4:621–632.PubMedCrossRefGoogle Scholar
  16. 15.
    Kabat, E.A. (1976) Structural Concepts in Immunology and Immunochemistry, 2nd ed., Holt, Rinehart and Winston, New York.Google Scholar
  17. 16.
    Wu, A.M., Sugii, S., and Herp, A. (1987) A guide for carbohydrate specificities of lectins In: “The Molecular Immunology of Complex Carbohydrates” (Wu, A.M., ed.), Plenum Press, New York and London. Appendix 1.Google Scholar
  18. 17.
    Mäkelä, O. (1957) Studies in hemagglutinins of legumiosae seeds. Ann. Med. Exp. Biol. Fenn. Suppl., 11, 35:1–156.PubMedGoogle Scholar
  19. 17A.
    Watkin, W.M. (1980) Biochemistry and Genetics of the ABO, Lewis, and P Blood Group System. Advan. Hum. Genet. 10:1–136.Google Scholar
  20. 18.
    Wu, A.M. (1984) Differential binding characteristics and application of DGalβl→3DGalNAc specific lectin, Mol. Cell. Biochem., 61:131–141.PubMedCrossRefGoogle Scholar
  21. 19.
    Etzler, M.E. and Kabat, E.A. (1970) Purification and characterization of a lectin (plant hemagglutinin) with blood group A specificity from Dolichos biflorus. Biochemistry, 9: 869–877.PubMedCrossRefGoogle Scholar
  22. 20.
    Etzler, M.E. (1972) Horse gram (Dolichos biflorus) lectin. Meth. Enzymol., 28:340–344.CrossRefGoogle Scholar
  23. 21.
    Baker, D.A., Sugii, S., Kabat, E.A., Ratcliffe, R.M., Hermentin, P., and Lemieux, R.U. (1983) Immunochemical studies on the combining sites of Forssman hapten reactive hemagglutinins fromDolichos biflorus, Helix pomatia and Wistaria floribunda. Biochemistry, 22:2741–2750.PubMedCrossRefGoogle Scholar
  24. 22.
    Carter, W.G. and Etzler, M.E. (1975) Isolation and characterization and subunit structure of multiple forms of Dolichos biflorus lectin. J. Biol. Chem., 250:2756–2762.PubMedGoogle Scholar
  25. 23.
    Carter, W.G. and Etzler, M.E. (1975) Isolation and characterization of subunits from the predominant form of Dolichos biflorus lectin. Biochemistry, 14:2685–2689.PubMedCrossRefGoogle Scholar
  26. 24.
    Rocourek, J., Jamieson, G.A., Votruba, T., and Horejsi, V. (1977).Studies on Phytohemagglutinins: 1.Some properties of the lectins of horse gram seeds(Dolichos Biflorus L.) Biochim. Biophys. Acta 500, 344–360.Google Scholar
  27. 25.
    Hammarström, S., Murphy, L.A., Goldstein, I.J., and Etzler, M.E. (1977) Carbohydrate binding specificity of four N-acetyl-D-galactosamine-“specific” lectins: Helix pomatia A hemagglutinin, soybean agglutinin, lima bean lectin and Dolichos biflorus lectin Biochemistry, 16:2750–2755.Google Scholar
  28. 26.
    Hammarström, S. and Rabat, E.A. (1969) Purification and characterization of a blood-group A reactive hemagglutinin from the snailHelix pomatia and a study of its combining site. Biochemistry, 8:2696–2705.PubMedCrossRefGoogle Scholar
  29. 27.
    Hammarström, S., Westoo, A., and Bjork, I. (1972) Subunit structure of Helix pomatia A hemagglutinin. Scand. J. Immunol., 1:295–309.PubMedCrossRefGoogle Scholar
  30. 28.
    Hammarström, S. (1974) Structure, specificity, binding properties and some biological activities of a blood group A-reactive hemagglutinin from the snailHelix pomatia. Ann. N.Y. Acad. Sci., 234:183–197.PubMedCrossRefGoogle Scholar
  31. 28A.
    Maliarik, M.J., Roberts, D.D., and Goldstein, I.J. (1987) Properties of the lectin from the Hog Peanut (Amphi- carpaea bracteata) Arch. Biochem. Biophys., 255:194–200.PubMedCrossRefGoogle Scholar
  32. 29.
    Sugii, S. and Rabat, E. A. (1980) Immunochemical specificity of the combining site of Wistaria floribunda hemagglutinin. Biochemistry, 19:1192–1199.PubMedCrossRefGoogle Scholar
  33. 30.
    Rurokawa, T., Tsuda, M. and Sugino, Y. (1976) Purification and characterization of a lectin from Wistaria floribunda seeds. J. Biol Chem., 251:5686–5693.Google Scholar
  34. 31.
    Cheung, G., Haratz, A., Ratar, M., Skrokov, R., and Poretz, R.D. (1979) Purification and properties of the hemagglutinin from Wistaria floribunda seeds. Biochemistry, 18:1646–1650.PubMedCrossRefGoogle Scholar
  35. 32.
    Pereira, M.E.A., Rabat, E.A., and Sharon, N. (1974) Immunochemical studies on the specificity of soybean agglutinin. Carbohydr. Res., 37:89–102.PubMedCrossRefGoogle Scholar
  36. 33.
    Gordon, J.A., Blumberg, S., Lis, H., and Sharon N. (1972) Method II. Purification of SBA by affinity chromatography. Meth. Enzymol., 28:365–368.CrossRefGoogle Scholar
  37. 34.
    Lotan, R., Siegelman, H.W., Lis, H., and Sharon, N. (1974) Subunit structure of soybean agglutinin. J. Biol. Chem., 249:1219–1224.PubMedGoogle Scholar
  38. 35.
    Wood, C., Rabat, E.A., Murphy, L.A., and Goldstein, I.J. (1979) Immunochemical studies on the combining sites of the two isolectins, A4 and B4, isolated from Bandeiraea simplicifolia. Arch. Biochem. Biophys., 198:1–11.PubMedCrossRefGoogle Scholar
  39. 36.
    Hayes, C.E. and Goldstein, I.J. (1974) An αD-galactosyl-Binding lectin from Bandeiraea simplicifolia seeds. Isolation by affinity chromatography and characterization. J. Biol. Chem., 249:1904–1914.PubMedGoogle Scholar
  40. 37.
    Murphy, L. A. and Goldstein, I.J. (1978) Bandeiraea simplici folia I isolectins. Meth. Enzymol., 50:345–349.PubMedCrossRefGoogle Scholar
  41. 38.
    Murphy, L. A. and Goldstein, I.J. (1977) Five α- Dgalactopyranosyl-binding isolectins fromBandeiraea simplicifolia seeds. J. Biol. Chem., 252:4739–4742.PubMedGoogle Scholar
  42. 39.
    Galbraith, W. and Goldstein, I.J. (1979) Phytohemag- glutinin of the lima bean (Phaseolus lunatus). Isolation, characterization and interaction with type A blood-group substance. Biochemistry, 11:3976–3984.CrossRefGoogle Scholar
  43. 40.
    Galbraith, W. and Goldstein, I.J. (1970) Phytohemagglutinins: a new class of metalloproteins. Isolation, purification and some properties of the lectin from Phaseolus lunatus. FEBS Lett., 9:197–201.PubMedCrossRefGoogle Scholar
  44. 41.
    Gould N.R. and Scheinberg, S.L.(1970) Isolation and partial characterization of two anti-A hemagglutinins from P. lunatus. Arch. Biochem. Biophys., 137:1–11.PubMedCrossRefGoogle Scholar
  45. 42.
    Galbraith, W. and Goldstein, I.J. (1972) Lima bean (Phaseolus lunatus) lectin. Meth. Enzymol., 28:318–323.CrossRefGoogle Scholar
  46. 43.
    Sikder, S.K., Rabat, E.A., Roberts, D.D., and Goldstein, I.J. (1986) Immunochemical studies on the combining site of the blood group A-specific lima bean lectin. Carbohydr. Res., 151:247–260.PubMedCrossRefGoogle Scholar
  47. 44.
    Roberts, D.D. and Goldstein, I.J. (1984) Effect of carbohydrate and metal ion binding on the reactivity of the essential thiol groups of lima bean lectin. J. Biol. Chem., 259:903–908.PubMedGoogle Scholar
  48. 45.
    Tollefsen, S.E. and Kornfeld, R. (1983) Isolation and characterization of lectins from Vicia villosa. Two distinct carbohydrate binding activities are present in seed extracts. J. Biol. Chem., 258:5166–5171.Google Scholar
  49. 46.
    Tollefsen, S.E. and Kornfeld, R. (1983) The B4 lectin fromVicia villosa seeds interacts with N-acetyl-galactosamine residues a-linked to serine or threonine residues in cell surface glycoproteins. J. Biol. Chem., 258:5172–5176.PubMedGoogle Scholar
  50. 47.
    Piller, V., Piller, F., and Cartron, J.P. (1986) Isolation and characterization of an N-acetylgalactosamine specific lectin from Salvia sclarea seeds. J. Biol. Chem., 261:14069–14075.PubMedGoogle Scholar
  51. 48.
    Sarker, M., Wu, A.M., and Kabat, E.A. (1981) Immunochemical studies on the carbohydrate specificity of Madura pomifera lectin. Arch. Biochem. Biophys., 209:204–218.CrossRefGoogle Scholar
  52. 49.
    Bausch, J.N. and Poretz, R.D. (1977) Purification and properties of the hemagglutinin from Madura pomifera seeds. Biochemistry, 16:5790–5794.PubMedCrossRefGoogle Scholar
  53. 50.
    Jones, J.M. and Feldman, J.D. (1973) Binding ofMadura pomifera lectin to rat lymphoid cells and erythrocytes. J. Immunol., 111:1765–1770.PubMedGoogle Scholar
  54. 51.
    Wu, A.M., Kabat, E.A., Gruezo, F.G., and Allen, H.J. (1980) Immunochemical studies on the combining site of the o-galactopyranose and 2-acetamido-2-deoxy-D-galacto- pyranose-specific lectin isolated fromBauhinia purpurea alba seeds. Arch. Biochem. Biophys., 204:622–639.PubMedCrossRefGoogle Scholar
  55. 52.
    Irimura, T. and Osawa, T. (1972) Studies on a hemagglutinin from Bauhinia purpurea alba seeds. Arch. Biochem. Biophys., 151:475–482.PubMedCrossRefGoogle Scholar
  56. 53.
    Osawa, T., Irimura, T., and Kawaguchi, T. (1978) Bauhinia purpurea agglutinin. Meth. Enzymol., 50:367–372.PubMedCrossRefGoogle Scholar
  57. 54.
    Poretz, R.D. (1972) Sophora japonica hemagglutinin. Meth. Enzymol., 28:349–354.CrossRefGoogle Scholar
  58. 55.
    Poretz, R.D., Riss, H., Timberlake, J.W., and Chien, S.M. (1974) Purification and properties of the hemagglutinin from Sophora japonica seeds. Biochemistry, 13:250–256.PubMedCrossRefGoogle Scholar
  59. 56.
    Timberlake, J.W., Won, R.B.C., and Poretz, R.D. (1980) Properties and subunit characterization of affinity purified Sophora japonica lectin. Prep. Biochem., 10:173–190.PubMedCrossRefGoogle Scholar
  60. 57.
    Wu, A.M., Kabat, E.A., Gruezo, F.G., and Poretz, R.D. (1980) Immunochemical studies on the reactivities and combining sites of the D-galactopyranose and 2-acetamido- 2-deoxy-D-galactopyranose specific lectin purified from Sophora japónica seeds. Arch. Biochem. Biophys., 209:191–203.CrossRefGoogle Scholar
  61. 58.
    Baenziger, J.U. and Fiete, D. (1979) Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. J. Biol. Chem., 254:9795–9799.PubMedGoogle Scholar
  62. 59.
    Olsnes, S., Saltvedt, E., and Pihl, A. (1974) Isolation and comparison of galactose-binding lectin from Abrus precatorius and Ricinus communis. J. Biol. Chem., 249:803–810.PubMedGoogle Scholar
  63. 60.
    Gürtler, L.G. and Horstmann, H.J. (1973) Subunits of toxin and agglutinin of Ricinus communis. J. Biophys. Acta, 295:582–594.Google Scholar
  64. 61.
    Nicolson, G.L., Blaustein, J., and Etzler, M.D. (1974) Characterization of two plant lectins from Ricinus communis and their quantitative interaction with murine lymphoma. Biochemistry, 13:196–204.PubMedCrossRefGoogle Scholar
  65. 62.
    Olsnes, S., Refsnes, K., Christensen, T.B., and Phil, A. (1975) Studies on the structure and properties of the lectins from Abrus precatorius and Ricinus communis. Biochim. Biophys. Acta., 405:1–10.PubMedGoogle Scholar
  66. 63.
    Olsnes, S. (1978) Ricin and ricinus agglutinin, toxic lectins from castor bean. Meth. Enzymol., 50:330–335.PubMedCrossRefGoogle Scholar
  67. 64.
    Lotan, R., Skutelsky, E., Danon, D., and Sharon, N. (1975) The purification, composition and specificity of the anti-T lectin from peanut (Arachis hypogaea). J. Biol. Chem., 250:8518–8523.PubMedGoogle Scholar
  68. 65.
    Terao, T., Irimura, T., and Osawa, T. (1975) Purification and characterization of a hemagglutinin from Arachis hypogaea. Hoppe-Seyler’s Z. Physiol. Chem., 356:1685–1692.PubMedCrossRefGoogle Scholar
  69. 66.
    Lotan, R. and Sharon, N. (1978) Peanut (Arachis hypogaea) agglutinin. Meth. Enzymol., 50:361–367.PubMedCrossRefGoogle Scholar
  70. 67.
    Pereira, M.E.A., Rabat, E.A., Lotan, R., and Sharon N.(1976) Immunochemical studies on the specificity of the peanut (Arachis hypogaea) agglutinin. Carbohydr. Res., 51:107–118.PubMedCrossRefGoogle Scholar
  71. 68.
    Sastry, M.V.R., Banarjee, P., Patanjali, S.R., Swamy, M.J., Swarnalatha, G.V., and Surolia, A. (1986) Analysis of saccharide binding to Artocarpus integrifolia lectin reveals specific recognition of T-antigen [Galβl→3GalNAc]. J. Biol. Chem., 261:1172 6–11733.Google Scholar
  72. 69.
    Kumar, G.S., Appukuttan, P.S., and Baus, D. (1982) α-D-Galactose-specific lectin from jack fruit (Artocarpus integri folia) seeds. J. Biosci., 4:257–261.CrossRefGoogle Scholar
  73. 69A.
    Chatterrjee, B.P. and Uhlenbruck, G. (1982) Occurrence of anti-Thomsen-Freidenreich (TF) like lectin in the seeds of jack fruit (Artocarpus integrifolia) reacting with ant (Oecophylla smargdina fabri) egg glycoprotein. Experientia, 38:1225–1226.CrossRefGoogle Scholar
  74. 69B.
    Chowdhury, S., Ahmed, H., and Chatterjee, B.P. (1987) Purification and characterization of an α-D-galactosyl- binding lectin from Artocarpus lakoocha seeds. Carbohydr. Res., 159:137–148.CrossRefGoogle Scholar
  75. 69C.
    Chatterjee, B.P., Chowdhury, S., and Ahmed, H. Further characterization of Artocarpus lakoocha lectin purified by rivanol. In: Abstract B-8, 4th European Carbohydrate Symposium, July 12–17, 1987, Darmstadt, FRG.Google Scholar
  76. 70.
    Raladas, P.M., Rabat, E.A., Iglesias, J.L., Lis, H., and Sharon, N. (1982) Immunochemical studies on the combining site of the D-galactose/N-acetyl-D-galactosamine specific lectin fromErythrina cristagalli seeds. Arch. Biochem. Biophys., 217:624–637.CrossRefGoogle Scholar
  77. 71.
    Iglesias, J.L., Lis, H., and Sharon, N. (1982) Purification and properties of a D-galactose/N-acetyl-D-galactosamine- specific lectin fromErythrina cristagalli. Eur. J. Biochem., 123:247–252.PubMedCrossRefGoogle Scholar
  78. 72.
    Bretting, H., Phillips, S.G., Rlumpart, H.J., and Rabat, E.A. (1981) A mitogenic lactose-binding lectin from the sponge Geodia cydonium. J. Immmunol., 127:1652–1658.Google Scholar
  79. 73.
    Horejsi, V. and Rocourek, J. (1978) Studies on lectins. XXXVII. Isolation and characterization of the lectin from jimson-weed seeds (Datura stramonium). Biochim. Biophys. Acta., 532:92–97.PubMedGoogle Scholar
  80. 74.
    Crowley, J.F. and Goldstein, I.J. (1981) Datura stramonium lectin: isolation and characterization of the homogeneous lectin. FEBS Lett., 130:149–152.CrossRefGoogle Scholar
  81. 75.
    Crowley, J.F., Goldstein, I.J., Arnarp, J., and Lonngren, J. (1984) Carbohydrate binding studies on the lectin from Datura stramonium seeds. Arch. Biochem. Biophys., 231: 524–533.PubMedCrossRefGoogle Scholar
  82. 76.
    Springer, G.F. (1971) Blood group and Forssman antigenic determinants shared between microbes and mammalian cells. Prog. Allergy, 15:9–77.PubMedCrossRefGoogle Scholar
  83. 76A.
    Makita, A., Suzuki, C., and Yohizawa, Z. (1966) Chemical and immunological characterization of the Forssman hapten isolated from equine organs. J. Biochem., 60:502–513.Google Scholar
  84. 77.
    Hakomori, S-I. and Rannagi, R. (1983) Glycosphingolipids as tumor-associated and differentiation markers. J. Nat. Cancer Inst., 71:231–351.PubMedGoogle Scholar
  85. 78.
    Raladas, P.M., Rabat, E.A., Rimura, A., and Ersson, B. (1981) The specificity of the combining site of the lectin from Vicia villosa seeds which reacts with cytotoxic T-lymphocytes. Mol. Immunol., 18:969–977.CrossRefGoogle Scholar
  86. 79.
    Wu, A.M., Rabat, E.A., Pereira, M.E.A., Gruezo, F.G., and Liao, J. (1982) Immunochemical studies on blood groups: the internal structure and immunological properties of water-soluble human blood group A substance studied by Smith degradation, liberation and fractionation of oligosaccharides and reaction with lectins. Arch. Biochem. Biophys., 215:390–404.PubMedCrossRefGoogle Scholar
  87. 80.
    Dahr, W., Uhlenbruck, G., and Bird, G.W.G. (1974) Cryptic A-like receptor sites in human erythrocyte glycoproteins: proposed nature of Tn-antigen. Vox. Sang., 27:29–42.PubMedCrossRefGoogle Scholar
  88. 81.
    Cartron, J.-P., Andreu, G., Cartron, J., Bird, G.W.G., Salmon, C., and Gerbal, A. (1978) Demonstration of T-transferase deficiency in Tn polyagglutinable blood samples. Eur. J. Biochem., 92:111–119.PubMedCrossRefGoogle Scholar
  89. 82.
    Cartron, J.-P., Blanchard, D., Nurden, A., Cartron, J., Rahuel, C., Lee, D., Vainchenker, W., Testa, U., and Rochant, H. (1982)In: “Blood Groups and Other Cell Surface Markers in Health and Disease.” (Salmon, C., ed.) pp. 39–54, Masson Publishing USA, Inc., New York.Google Scholar
  90. 83.
    Springer, G.F. (1984) T and Tn, general carcinoma autoantigens. Science, 224:1198–1206.PubMedCrossRefGoogle Scholar
  91. 84.
    Hirohashi, S., Clausen, H., Yamada, T., Shimosato, Y., and Hakomori, S.-I. (1985) Blood group A cross-reacting epitope defined by monoclonal antibodies NCC-LU-35 and -81 expressed in cancer of blood group 0 or B individuals: Its identification as Tn antigen. Proc. Natl. Acad. Sci. U.S.A., 82:7039–7043.PubMedCrossRefGoogle Scholar
  92. 85.
    Springer, G.F., Desai, P.R., and Banatwala, I. (1975) Blood group MN antigens and precursors in normal and malignant human breast glandular tissue. J. Natl. Cancer Inst., 54:335–339.PubMedGoogle Scholar
  93. 86.
    Anglin, J.H., Jr., Lerner, M.P., and Nordquist, R.E. (1977) Blood group-like activity released by human mammary carcinoma cells in culture. Nature, 269:254–255.PubMedCrossRefGoogle Scholar
  94. 87.
    Springer, G.F. and Desai, P.R. (1975) Human blood group MN and precursor specificities: structural and biological aspects. Carbohydr. Res., 40:183–192.PubMedCrossRefGoogle Scholar
  95. 88.
    Debray, H., Decout, D., Strecker, G., Spik, G., and Montreuil, J. (1981) Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N- glycosylproteins. Eur. J. Biochem., 117:41–55.PubMedCrossRefGoogle Scholar
  96. 89.
    Wu, A.M., Sugii, S., Gruezo, F.G., and Rabat, E.A. (1987) Immunochemical studies on the Galβ1-→4 (3) GalNAc specificity of Ricinus communis agglutinin. Carbohydr. Res., (in press).Google Scholar
  97. 90.
    Feizi, T. (1985) Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glyco- lipids are oneo-developmental antigens. Nature, 314:53–57.PubMedCrossRefGoogle Scholar
  98. 91.
    Cummings, R.D. and Rornfeld, S. (1982) Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris. leuko- agglutinating and erythroagglutinating lectins. J. Biol. Chem., 257:11230–11234.PubMedGoogle Scholar
  99. 92.
    Hammarstrdm, S., Hammarstrom, M.L., Sundblad, G., Arnarp, J., and Lonngren, J. (1982) Mitogenic leukoagglutinin from Phaseolus vulgaris binds to a pentasaccharide unit in N- acetyllactosamine-type glycoprotein glycans. Proc. Natl. Acad. Sci., 79:1611–1615.CrossRefGoogle Scholar
  100. 93.
    Spiro, R.G. and Bhoyroo, V.D. (1974) Structure of the O- glycosidically linked carbohydrate units of fetuin. J. Biol. Chem., 249:5704–5717.PubMedGoogle Scholar
  101. 94.
    Graham, E.R.B. (1972) Fetuin. In: Glycoproteins (Gottschalk, A., ed.), 2nd ed., pp. 717–731, Elsvier, Amsterdam.Google Scholar
  102. 95.
    Nilsson, B., Norden, N.E., and Svensson, S. (1979) Structural studies on the carbohydrate portion of fetuin. J. Biol. Chem., 254:4545–4553.PubMedGoogle Scholar
  103. 95A.
    Townsend, R.R., Hardy, M.R., Wong, T.C., and Lee, Y.C. (1986) Binding of N-linked bovine fetuin glycopeptides to isolated rabbit hepatocytes: Gal/GalNAc hepatic lectin discrimination between Galβ1→4GlcNAc and Galβ1→3GalNAc in a triantennary structure. Biochemistry, 25:5916–5725.CrossRefGoogle Scholar
  104. 95B.
    Edge, A.S.B. and Spiro, R.G. (1987) Presence of an O- Glycosidically Linked Hexasaccharide in Fetuin. J. Biol. Chem. 262:16135–16141.PubMedGoogle Scholar
  105. 96.
    Leskowitz, S. and Rabat, E. A. (1954) Immunochemical studies on blood groups. XV. The effect of mild acid hydrolysis on the glucosamine and galactosamine in blood group substances. J. Amer. Chem. Soc., 76:5060–5065.CrossRefGoogle Scholar
  106. 97.
    Allen, P.Z. and Rabat, E.A. (1959) Immunochemical studies on blood groups. XXII. Immunochemical studies on the nondialyzable residue from partially hydrolyzed blood group A, B, and O(H) substances (PI fraction). J. Immunol., 82:340–357.PubMedGoogle Scholar
  107. 98.
    Rabat, E.A. (1956) In: “Blood group substances. Their Chemistry and Immunochemistry.” Academic Press, New York pp. 135–139.Google Scholar
  108. 99.
    Beiser, S.M. and Rabat, E.A. (1952) Immunochemical studies on blood groups. XII. Preparation of blood group substances from bovine stomach linings and a comparison of their chemical and immunochemical properties with those of blood group substances from other species. J. Immunol., 68:19–40PubMedGoogle Scholar
  109. 100.
    Lloyd, K.O. and Kabat, E.A. (1968) Immunochemical studies on blood groups. XLI. Proposed structures for the carbohydrate portions of blood group A, B, H, Lewis3, and Lewisb substances. Proc. Natl Acad. Sci., 61:1470–1477.PubMedCrossRefGoogle Scholar
  110. 101.
    Vicari, G. and Rabat, E.A. (1969) Immunochemical studies on blood groups. XVII. Isolation and characterization from ovarian cyst fluid of a blood group substances lacking A, B, H, Lea and Leb specificity. J. Immunol., 102:821–825.PubMedGoogle Scholar
  111. 102.
    Maisonrouge-Muliffe, F. and Rabat, E.A. (1976) Immunochemical studies on blood groups. Fractionation, heterogeneity, and chemical and immunochemical properties of blood group substances with B, I, and i activities purified from human ovarian cyst fluid. Arch. Biochem. Biophys., 175:71–80.CrossRefGoogle Scholar
  112. 103.
    Rabat, E.A., Bendich, A., Bezer, A.E., and Rnaub, V. (1948) Immunochemical studies on blood groups. VI. The cross-reaction between type XIV antipneumococcal horse serum and purified blood group A, B, and O substances from hog and human sources. J. Exp. Med., 87:295–300.CrossRefGoogle Scholar
  113. 104.
    Newman, W. and Rabat, E.A. (1976) Immunochemical studies on blood groups. Purification, chemical and immunochemical properties of blood group-active glycoproteins from horse gastric mucosae. Arch. Biochem. Biophys., 172:510–523.PubMedCrossRefGoogle Scholar
  114. 105.
    Rabat, E.A., Bendich, A., Bezer, A.E., and Beiser, S.M. (1947) Immunochemical studies on blood groups. IV. Preparation of blood group A substances from human sources and comparison of their chemical and immunochemical properties with those of the blood group A substance from hog stomach. J. Exp. Med., 85:685–699.CrossRefGoogle Scholar
  115. 106.
    Baer, H., Rabat, E.A., and Rnaub, V. (1950) Immunochemical studies on blood groups. X. The preparation of blood group A and B substances and an active substance from individual horse stomachs and of blood group B substance from human saliva. J. Exp. Med., 91:105–114.PubMedCrossRefGoogle Scholar
  116. 107.
    Rovis, L., Anderson, B., Rabat, E.A., Gruezo, F., and Liao, J. (1973) Structures of oligosaccharides produced by base-borohydride degradation of human ovarian cyst blood group H, Leb, and Lea active glycoproteins. Biochemistry, 12:5340–5354.PubMedCrossRefGoogle Scholar
  117. 108.
    Wu, A.M., Rabat, E.A., Nilsson, B., Zopf, D. A., Gruezo, F.G., and Liao, J. (1984) Immunochemical studies on blood groups. Purification and characterization of radioactive 3H-reduced di- to hexasaccharides produced by alkaline β- elimination-borohydride 3H reduction of Smith degraded blood group A active glycoproteins. J. Biol. Chem., 259:7178–7186.PubMedGoogle Scholar
  118. 108A.
    Mutsaers, J.H.G.M., Van Halbeek, H., Vliegenthart, J.F.G., Wu, A.M., and Rabat, E.A. (1986) Typing of core and backbone domains of mucin-type oligosaccharides from human ovarian-cyst glycoproteins by 500-MHz 1H-NMR spectroscopy. Eur. J. Biochem., 157:139–146.PubMedCrossRefGoogle Scholar
  119. 109.
    Krause, R.M. and Marthy, M. (1962) Studies on the chemical structure of the streptococcal cell wall. II. The composition of group C cell walls and chemical basis for serologic specificity of the carbohydrate moiety. J. Exp. Med., 115:49–62.PubMedCrossRefGoogle Scholar
  120. 110.
    Herp, A., Borelli, C., and Wu, A.M. (1987) Biochemistry and lectin binding properties of mammalian salivary mucous glycoprotein. In: “The Molecular Immunology of Complex Carbohydrates.” (Wu, A.M., ed.) Plenum Press, New York and London, pp. II-6.Google Scholar
  121. 111.
    Dries, A.L., Komatsu, S.K., and Feeney, R.E. (1970) Chemical and physical properties of freezing point- depressing glycoproteins from antarctic fishes. J. Biol. Chem., 245:2901–2908.Google Scholar
  122. 112.
    Lin, Y., Duman, J.G., and Dries, A.L. (1972) Studies on the structure and activity of low molecular weight glycoproteins from an antarctic fish. Biochem. Biophys. Res. Commun., 46:87–92.PubMedCrossRefGoogle Scholar
  123. 113.
    Schmid, K., Binette, J.P., Dorland, L., Vliegenthart, J.F.G., Fournet, B., and Montreuil, J. (1979) The primary structure of the asialo-carbohydrate oimits of the first glycosylation site of human plasma α1-acid glycoprotein. Biochim. Biophys. Acta., 581:356–359.PubMedGoogle Scholar
  124. 114.
    Fournet, B., Montreuil, J., Strecker, G., Dorland, L., Haverkamp, J., Vliegenthart, J.F.G., Binette, J.P., and Schmid, K. (1978) Determination of primary structures of 16 asialo-carbohydrate units derived from human plasma α1-acid glycoprotein by 3 60-MHz 1H-NMR spectroscopy and permethylation analysis. Biochemistry, 17:5206–5214.PubMedCrossRefGoogle Scholar
  125. 115.
    Lindberg, B., Lonngren, J., and Powell, D.A. (1977) Structural studies on the specific for type-14 pneumococcal polysaccharide. Carbohydr. Res., 58:177–186.PubMedCrossRefGoogle Scholar
  126. 116.
    Singer, S.J. and Nicolson, G.L., (1972) The fluid mosaic model of the structure of cell membranes. Science 175: 720–731.PubMedCrossRefGoogle Scholar
  127. 117.
    Nicolson, G.L. (1973) Cis- and trans-membrane control of cell surface topography. J. Supramol. Struct. 1:410–416.PubMedCrossRefGoogle Scholar
  128. 118.
    Nicolson, G.L. (1974) Factors influencing the dynamic display of lectin binding sites on normal and transformed cell surfaces. In: Control of Proliferation in Animal Cells (Clarkson, B. and Baserga, R., eds.), pp. 251–270. Spring Harbor, New York.Google Scholar
  129. 119.
    Tanner, M.J.A. and Anstee, D.J. (1976) A method for the direct demonstration of the lectin-binding components of the human erythrocyte membrane. Biochem. J., 153:265–270.PubMedGoogle Scholar
  130. 120.
    Gros, D., Obrenovitch, A., Challice, C.E., Monsigny, M., and Schrevel, J. (1977) Ultrastructural visualization of cellular carbohydrate components by means of lectins on ultrathin glycol methacrylate sections. J. Histochem. Cytochem., 25:104–114.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Albert M. Wu
    • 1
  • Shunji Sugii
    • 2
  1. 1.Department of Veterinary Pathology, College of Veterinary MedicineTexas A&M UniversityUSA
  2. 2.Department of Serology and ImmunologySchool of Medical Technology, Kitasato UniversitySagamihara, KanagawaJapan

Personalised recommendations