Advertisement

Sialic Acid and N-Acetylgalactosamine Specific Bacterial Lectins of Enterotoxigenic Escherichia Coli (ETEC)

  • Mats Lindahl
  • Reinhard Brossmer
  • Torkel Wadström
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 228)

Abstract

Many pathogenic and nonpathogenic bacteria have the ability to produce proteins that mediate adhesion to surfaces. These “adhesions” are usually seen in the electron microscope as filaments, protruding from the cell surface. The filaments are called fimbriae (or pili) and in general they have the ability to bind to carbohydrates and cause hemagglutination. Their ability to mediate adhesion to cells has been correlated with the pathogenicity of bacteria.

Keywords

Sialic Acid Bovine Colostrum Specific Lectin Sialic Acid Specific Lectin Colominic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai, H. and Munoz, J. J. (1979) Fimbrial hemagglutinin in stationary and shake cultures of Bordetella pertussis, Infect. Immun., 25: 764–767.PubMedGoogle Scholar
  2. Atkinson, H. M. and Trust, T. J. (1980) Hemagglutination properties and adherence ability of Aeromonas hydrophila, Infect. Immun., 27: 938–946.PubMedGoogle Scholar
  3. Atroshi, F., Schilt, R. and Sandholm, M. (1983) K88-mediated adhesion of E.coli inhibited by fractions in sow milk, Zbt. Vet. Med. B, 30 425–433.Google Scholar
  4. Basch, J. J., Farrell Jr., H. M. and Greenberg, R. (1976) Identification of the milk fat globule membrane proteins. I. Isolation and partial characterization of glycoprotein B, Biochim.Biophys.Acta, 448; 589–598.PubMedCrossRefGoogle Scholar
  5. Bhat, P., Albert, M.J., Rajan, D., Ponniah, J., Methan, V.I. and Baker, S.J. (1980) Bacterial flora of the jejunum: a comparison of luminal aspirate and mucosal biopsy, J.Med.Microbiol., 13: 247–256.PubMedCrossRefGoogle Scholar
  6. Brinton, C. C. (1965) The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria, Trans. N.Y.Acad.Sci., 27: 1003–1054.PubMedGoogle Scholar
  7. Cheney, C. P. and Boedeker, E. C. (1984) Rabbit mucosal receptors for an enteropathogenic Escherichia coli strain: appearance of bacterial receptor activity at weaning, Gastroenterology, 87: 821–826.PubMedGoogle Scholar
  8. Collier, W. A. and de Miranda, J. C. (1955) Bacterien-haemag-glutination. III. Die hemmung der coli-haemagglutination durch mannose, Antoine van Leeuwenhoek, J.Microbiol. Serol., 21: 135–140.Google Scholar
  9. Culling, C. F. A., Reid, P. E., Dunn, W. L. and Clay, M. G. (1977) Histochemical comparison of the epithelial mucins in the ileum in Crohn’s disease and in normal controls, J.Clin. Path., 30: 1063–1067.PubMedCrossRefGoogle Scholar
  10. Duguid, J. P., Smith, I. W., Dempster, G. and Edmunds, P. N. (1955) Nonflagellar filamentous appendages (“fimbriae”) and haemagglutinating activity in bacterium coli, J.Path. Bact., 70: 335–348.PubMedCrossRefGoogle Scholar
  11. Dupuis, G. and Leclair, B. (1982) Structural requirements for simple sugars to inhibit the agglutination of human group A erythrocytes, FEBS Lett., 144: 29–32.PubMedCrossRefGoogle Scholar
  12. Dzandu, J. K., Deh, M. E., Barratt, D. L. and Wise, G. E. (1984) Detection of erythrocyte membrane proteins, sialoglycoproteins and lipids in the same polyacryl- amide gel using a double-staining technique, Proc.Natl. Acad.Sci., 81: 1733–1737.PubMedCrossRefGoogle Scholar
  13. Eshdat, Y., Silverblatt, F. J. and Sharon, N. (1981) Dissociation and reassembly of Escherichia coli type 1 pili, J.Bact., 148: 308–314.PubMedGoogle Scholar
  14. Evans, D. G., Evans, D.J., Clegg, S. and Pauley, J. A. (1979) Purification and characterization of the CFA/I antigen of enterotoxigenic Escherichia coli, Infect.Immun., 25: 738–748.PubMedGoogle Scholar
  15. Faris, A., Lindahl, M. and Wadström, T. (1980) GM-like glycoconjugate as possible receptor for CFA/I and K99 haemagglutinins on enterotoxigenic Escherichia coli, FEMS Microbiol. Lett., 7: 265–269.CrossRefGoogle Scholar
  16. Faris, A., Lindahl, M., Ljungh, Å., Old, D. C. and Wadström, T. (1983) Autoaggregating Yersinia enterocolitica express surface fimbriae with high surface hydro- phobicity, J. Appl. Bact., 55: 97–100.Google Scholar
  17. Firon, N., Ofek, I. and Sharon, N. (1983) Carbohydrate specificity of the surface lectins of Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium, Carbohydr.Res., 120: 235–249.PubMedCrossRefGoogle Scholar
  18. Fischer, J., Klein, P.–J., Farrar, G. H., Hanisch, F.–G. and Uhlenbruck, G. (1984) Isolation and chemical and immunochemical characterization of the peanut-lectinbinding glycoprotein from human milk-fat-globule membranes, Biochem.J., 224: 581–589.PubMedGoogle Scholar
  19. Fletcher, M. A., Brunschwig, J. P., Lo, H., Caldwell, K. E. and Lo, T. M. (1982) Biochemical and morphological properties of bovine erythrocyte membrane glycoproteins, J.Cell. Biol., 19: 157–170.Google Scholar
  20. Forstner, J. F. (1978) Intestinal mucins in health and disease, Digestion, 17: 234–263.PubMedCrossRefGoogle Scholar
  21. Forstner, J. F., Jabbal, I., Qureshi, R., Kells, D. I. C. and Forstner, G. G. (1979) The role of disulphide bonds in human intestinal mucin, Biochem. J., 181: 725–732.PubMedGoogle Scholar
  22. Freter, R. (1984) Interdependence of mechanisms that control bacterial colonization of the large intestine. Microecology and Therapy, 14: 89–96.Google Scholar
  23. Fukuda, K., Tomita, M. and Hamada, A. (1980) Isolation and characterization of alkali-labile oligosaccharide units from horse glycophorin, J.Biochem.,87: 687–693.PubMedGoogle Scholar
  24. Fukuda, K., Kawashima, I., Tomita, M. and Hamada, A. (1982) Structural studies of the acidic oligosaccharide units from bovine glycophorin, Biochim. Biophys.Acta, 717: 278–288.PubMedGoogle Scholar
  25. Galbraith, W. and Goldstein, I. J. (1972) Phytohemagglutinin of the Lima bea (Phaseolus lunatus). Isolation, characterization and interaction with type A blood- group substance, Biochem., 11: 3976–3984.CrossRefGoogle Scholar
  26. Gibbons, R. A., Jones, G. W. and Sellwood, R. (1975) An attempt to identify the intestinal receptor for the K88 adhesin by means of a haemagglutination inhibition test using glycoproteins and fractions from sow colostrum, J.Gen.Microbiol., 86: 228–240.PubMedGoogle Scholar
  27. de Graaf, F. K. and Roorda, I. (1982) Production, purification, and characte rization of the fimbrial adhesive antigen F41 isolated from calf enteropathogenic Escherichia coli strain B41M, Infect.Immun. 36:751–758.PubMedGoogle Scholar
  28. Guyot, G. (1908) Ueber die bakterielle hamagglutination (bakterio-hemagglutination), Zbt.Bakt.I.Abt.Orig., 47: 640–653.Google Scholar
  29. Hall, J. L. and Rowlands Jr, D. T. (1974) Heterogeniety of lobster agglutinins. II. Specificity of agglutinin- erythrocyte binding, Biochem., 13: 828–832.CrossRefGoogle Scholar
  30. Hardy, S. W., Fletcher, T. C. and Gerrie, L. M. (1976) Factors in haemolymph of the mussel Mytilus edulis L., of possible significance as defence mechanisms, Biochem. Soc.Trans., 4: 473–475.PubMedGoogle Scholar
  31. Hartman, A.L., Campbell, P.A. and Abel, C.A. (1978) An improved method for the isolation of lobster lectins, Develop, and Comp. Immunology, 2: 617–625.Google Scholar
  32. Hirano, S., Hayashi, H., Masuda, F. and Onodera, K. (1966) Mucopolysaccharides isolated from human and cow colostrums, Agr. Biol. Chem., 30: 212–219.CrossRefGoogle Scholar
  33. Honkanen-Buzalski, T. and Sandholm, M. (1981) Association of bovine secretory immunoglobulins with milk fat globule membranes, Comp.Immun.Microbiol. Infect.Dis., 4: 329–342.CrossRefGoogle Scholar
  34. Hoskins, L. C. and Boulding, E. T. (1981) Mucin degradation in human colon ecosystems: evidence and role of bacterial subpopulations producing glycosidases as extracellular enzymes, J. Clin. Invest., 67: 163–172.PubMedCrossRefGoogle Scholar
  35. Iguchi, S. M. M., Egawa, K. and Momi, T. (1983) Isolation and characterization of a novel sialic acid-specific lectin (Achatinin) in the mucus of Achatina fulica, in: “Glycoconjugates”, Chester, M. A., Heinegrd, D., Lundblad, A. and Svensson, S. eds., Proceedings of the 7th international symposium on glycoconjugates, Lund-Ronneby, 304–305.Google Scholar
  36. Isaacson, R. E. (1977) K99 surface antigen of Escherichia coli: purification and partial characterization, Infect. Immun., 15: 272–279.PubMedGoogle Scholar
  37. Isaacson, R. E., Fusco, P. C., Brinton, C. C. and Moon, H. W. (1978) In vitro adhesion of Escherichia coli to porcine small intestinal epithelial cells: pili as adhesive factors, Infect.Immun., 21: 392–397.PubMedGoogle Scholar
  38. Isaacson, R. E. and Richter, P. (1981) Escherichia coli 987P pilus: purification and partial characterization, J.Bact., 146; 784–789.PubMedGoogle Scholar
  39. Jackson, R. H., Coulson, E. J. and Clark, W. R. (1962) The mucoprotein of the fat/plasma interface of cow’s milk. I. Chemical and physical characterization, Arch.Biochem. Biophys., 97: 373–377.Google Scholar
  40. Jollès, P. and Fiat, A.-M. (1979) The carbohydrate portions of milk glycoproteins, J.Dairy Res., 46: 187–191.PubMedCrossRefGoogle Scholar
  41. Jones, G. W. and Rutter, J. M. (1972) Role of the K88 antigen in the pathogenesis of neonatal diarrhoea caused by Escherichia coli in piglets, Infect. Immun., 6: 918–927.PubMedGoogle Scholar
  42. Kawashima, I., Fukuda, K., Tomita, M. and Hamada, A. (1982) Isolation and characterization of alkali-labile oligosaccharide units from porcine erythrocyte glycophorins, J.Biochem. 93: 865–874.Google Scholar
  43. Kearns, M.J. and Gibbons, R.A (1979) The possible nature of the pig intestinal receptor for the K88 antigen of Escherichia coli, FEMS Microbiol.Lett. 6: 165–168.CrossRefGoogle Scholar
  44. Kobylka, D., Khetty, A., Shin, B.C. and Carraway, K.L. (1972) Proteins and glycoproteins of the erythrocyte membrane, Arch.Biochem.Biophys. 148: 475–487.PubMedCrossRefGoogle Scholar
  45. Kolstø Otnaess, A.-B., Laegreid, A. and Ertresvåg, K. (1983) Inhibition of enterotoxin from Escherichia coli and Vibrio cholerae by gangliosides from human milk, Infect.Immun. 40; 563–569.Google Scholar
  46. Lambden, P.R. (1982) Biochemical comparison of pili from variants of Neisseria gonorrhoeae P9, J.Gen.Microbiol., 128: 2105–2111.PubMedGoogle Scholar
  47. Leffler, H. and Svanborg-Edén, C. (1980) Chemical identification of a glycosphingolipid receptor for Escherichia coli attaching to human urinary tract epithelial cells and agglutinating human erythrocytes, FEMS Microbiol. Lett., 8: 127–134.CrossRefGoogle Scholar
  48. Lev, R. (1968) A histochemical study of glycogen and mucin in developing human foetal epithelia, Histochem.J., 1:152–165.CrossRefGoogle Scholar
  49. Liljas, L. (1978) Aggregates of human erythrocyte membrane sialoglycoproteins in the presence of deoxycholate and dodecyl sulphate, Biochim.Biophys.Acta., 532: 347–353.PubMedGoogle Scholar
  50. Lindahl, M., Faris, A. and Wadström, T. (1982) Colonization factor antigen on enterotoxigenic Escherichia coli is a sialic- specific lectin, Lancet, 2: 280.PubMedCrossRefGoogle Scholar
  51. Lindahl, M. and Wadström, T. (1983) Comparative properties of K99 and 3P-(F41); two sialic acid specific hemagglutinins of enterotoxigenic E.coli (ETEC), in “Proceedings of fourth international symposium on neonatal diarrhea, Acres, S.D., ed., Veterinary infectious disease organization (VIDO), Saskatchewan, 225–234.Google Scholar
  52. Lindahl, M. and Wadström, T. (1984) K99 surface haemagglutinin of enterotoxigenic E.coli recognize terminal N-acetyl- galactosamine and sialic acid residues of glycophorin and other complex glycoconjugates, Vet.Microbiol., 9: 249–257.PubMedCrossRefGoogle Scholar
  53. Lindahl, M., Carlstedt, I. and Wadström, T. (1985) Binding of K99 fimbriae to pig small intestinal mucin and erythrocyte membrane glycoproteins, in: “Molecular biology of microbial pathogenicity. Role of protein-carbohydrate interactions”, Fullerlove, G., ed. Academic Press, London.Google Scholar
  54. Linden, G. and Alais, C. (1976) Phosphatase alkaline du lait de vache II. Structure sous-unitaire, nature metalloproteique et para-metres cinetique, Biochim.Biophys. Acta, 429; 205–213.PubMedGoogle Scholar
  55. Lisowska, E., Duk, M. and Dahr, W. (1980) Comparison of alkali- labile oligosaccharide chains of M and N blood-group glycopeptides from human erythrocyte membrane, Carbohydr. Res., 79: 103–113.PubMedCrossRefGoogle Scholar
  56. Maget-Dana, R., Roche, A.–C. and Monsigny, M. (1979) Ganglio- side- Limulin interactions, ins “Progress in clinical and biological research vol. 2 9”, Cohen E., ed., Alan R. Liss, Inc., New York, 567–578.Google Scholar
  57. Mantle, M. and Allen, A. (1981) Isolation and characterization of the native glycoprotein from pig small-intestinal mucus, Biochem.J., 195: 267–275.PubMedGoogle Scholar
  58. Merrick, J.M., Schifferle, R., Zadarlik, K., Kano, K. and Milgrom, F. (1977) Isolation and partial characterization of the heterophile antigen of infectious mononucleosis from bovine erythrocytes, J.Supramol.Struct., 6: 275–290.PubMedCrossRefGoogle Scholar
  59. Miller, R.L. (1982) A sialic acid-specific lectin from the slug Limax flavus, J. Invertebr.Pathol., 39: 210–214.PubMedCrossRefGoogle Scholar
  60. Mohan, S., Thambi, Oorai, D., Srimal, S., and Bachawat, B.K. (1982) Binding studies of a sialic acid-specific lectin from horseshoe crab Carcinos corpus rotunda cauda with various silaoglycoproteins, Biochem.J., 203: 253–261.PubMedGoogle Scholar
  61. Morris, J. A., Stevens, A. E. and Sojka, W. J. (1977) Preliminary characterization of cell-free K99 antigen isolated from Escherichia coli B41, J.Gen.Microbiol., 99: 353–357.PubMedGoogle Scholar
  62. Morris, J. A., Thorns, C. J. and Sojka, W. J. (1980) Evidence for two adhesive antigens on the K99 reference strain Escherichia coli B41, J.Gen.Microbiol., 118: 107–113.PubMedGoogle Scholar
  63. Murray, P. A., Levine, M. J., Tabak, L. A. and Reddy, M. S. (1982) Specificity of salivary-bacterial interactions: II. Evidence for a lectin on Streptococcus sanguis with specificity for a NeuAcα2,3Galβ1,3GalNAc sequence, Biochem. Biophys.Res.Commun., 106: 390–396.CrossRefGoogle Scholar
  64. Nagy, B., Moon, H. W. and Isaacson, R. E. (1976) Colonization of porcine small intestine by Escherichia coli: ileal colonization and adhesion by pig enteropathogens that lack K88 antigen and by acapsular mutants, Infect. Immun., 13: 1214–1220.PubMedGoogle Scholar
  65. Nishiura, M. (1984) Analysis of sialic acids in bovine intestinal mucins, Bull.Tokyo Med.Dent.Univ., 31: 1–11.PubMedGoogle Scholar
  66. Nowicki, B., Rhen, M., Vaisenen-Rhen, V., Pere, A. and Korhonen, T. K. (1984) Immunofluorescence study of fimbrial phase variation in Escherichia coli KS 71, J.Bact., 160: 691–695.PubMedGoogle Scholar
  67. Ørskov, I., Ørskov, F., Smith, H. W. and Sojka, W. J. (1975) The establishment of K99, a thermolabile, transmissible Escherichia coli K antigen, previously called “Kco”, possessed by calf and lamb enteropathogenic strains, Acta Pathol.Microbiol. Scand. Sect.B, 83: 31–36.Google Scholar
  68. Ørskov, F., Ørskov, I., Sutton, A., Schreerson, R., Lin, W., Egan, W., Hoff, G. E. and Robbins, J. B. (1979) Form variation in Escherichia coli K1: determined by O-acetylation of the capsular polysaccharide, J.Exp. Med., 149: 669–685.PubMedCrossRefGoogle Scholar
  69. Otnaess, A.-B. and Halvorsen, S. (1980) Non-antibody components in human milk inhibit Escherichia coli heat labile enterotoxin measured by an enzyme- linked immunosorbent assay, Acta Path.Microbiol.Scand.Sect. C, 88: 247–253.Google Scholar
  70. Parkkinen, J., Finne, J., Achtman, M., Väisenen, V. and Korhonen, T. K. (1983) Escherichia coli strains binding neuraminyl α2–3 galactosides, Biochem. Biophys.Res. Commun., 111: 456–461.PubMedCrossRefGoogle Scholar
  71. Perrin, D. R. (1955) The chemical composition of the colostrum and milk of the sow, J.Dairy Res., 22: 103–107.CrossRefGoogle Scholar
  72. Reiter, B. (1981) The contribution of milk to resistance to intestinal infection in the newborn, in: “Immunological aspects of infection in the fetus and newborn”, Lambert, H. P. and Wood, C. B. S., eds., Academic Press, London, 155–193.Google Scholar
  73. Roberton, A. M. and Stanley, R. A. (1982) In vitro utilization of mucin by Bacteroides fragilis, Appl.Environ. Microbiol., 43: 325–330.PubMedGoogle Scholar
  74. Roche, A.-C. and Monsigny, M. (1979) Limulin (Limulus polyphemus lectin). Isolation, physicochemical properties, sugar specificity and mitogenic activity, in: “Progress in clinical and biological research vol. 29”, Cohen, E., ed., Alan R. Liss, Inc., New York, 603–616.Google Scholar
  75. Rohde, R., Aleksic, S., Müller, G., Plavsic, S. and Aleksic, V. (1975) Profuse fimbriae conferring O-inagglutin- ability to several strain of S.typhimurium and S.enteritidis isolated from pasta products cultural, morphological, and serological experiments, Zbl.Bakt. Hyg.I.Abt.Orig.A, 230: 38–50.Google Scholar
  76. Runnels, P. L., Moon, H. W. and Schneider, R. A. (1980) Development of resistence with host age to adhesion of K99+ Escherichia coli to isolated intestinal epithelial cells, Infect.Immun., 28: 298–300.PubMedGoogle Scholar
  77. Rutter, J. M., Burrows, M. R., Sellwood, R. and Gibbons, R. A. (1975) A genetic basis for resistance to enteric disease caused by E.coli, Nature, 257: 135–136.PubMedCrossRefGoogle Scholar
  78. Rutter, J. M., Jones, G. W., Brown, G. T. H., Burrows, M. R. and Luther, P. D. (1976) Antibacterial activity in colostrum and milk associated with protection of piglets against enteric disease caused by K88-positive Escherichia coli, Infect. Immun., 13: 667–676.PubMedGoogle Scholar
  79. Sarkar, M., Wu, A. M. and Kabat, E. A. (1981) Immunochemical studies on the carbohydrate specificity of Maclura pomifera lectin, Arch.Biochem.Biophys., 209: 204–218.PubMedCrossRefGoogle Scholar
  80. Savage, D. C. and Blumershine, R. V. H. (1974) Surface-surface associations in microbial communities populating epithelial habitats in the murine gastrointestinal ecosystem: scanning electron microscopy, Infect.Immun. 10: 240–250.PubMedGoogle Scholar
  81. Smit, H., Gaastra, W., Kamerling, J. P., Vliegenhart, F. G. and de Graaf, F. K. (1984) Isolation and structural characterization of the equine erythrocyte receptor for enterotoxigenic Escherichia coli K99 fimbrial adhesin, Infect. Immun., 46: 578–584.PubMedGoogle Scholar
  82. Smith, H. W. and Linggood, M. A. (1971) Observations on the pathogenic properties of the K88, Hly and Ent plasmids of Escherichia coli with particular reference to porcine diarrhoea, J.Med.Microbiol., 4: 467–485.PubMedCrossRefGoogle Scholar
  83. Snow, L. D., Colton, D. G. and Carraway, K. L. (1977) Purification and properties of the major sialoglycoprotein of the milk fat globule membrane, Arch.Biochem.Biophys., 179: 690–697.PubMedCrossRefGoogle Scholar
  84. Sobeslavsky, O., Prescott, B. and Chanock, R. M. (1968) Adsorption of Mycoplasma pneumoniae to neuraminic acid receptors of various cells and possible role in virulence, J.Bact., 96: 695–705.PubMedGoogle Scholar
  85. Sugii, S. and Kabat, E. A. (1980) Immunochemical specificity of the combining site of Wistaria floribunda hemagglutinin, Biochem., 19: 1192–1199.CrossRefGoogle Scholar
  86. Svanborg-Edén, C. and Hansson H. A. (1978) Escherichia coli pili as mediators of attachment to human urinary tract epithelial cells, Infect. Immun., 21: 229–237.Google Scholar
  87. Wadström, T., Sjöberg, P.-O. and Lindahl, M. (1985) Sialic acid specific lectins of enterotoxigenic E.coli, in: “Lectins, Biology, Biochemistry, Clinical Biochemistry” vol.4, Bøg-Hansen, T. C. and Breborowicz, J., eds., W. de Gruyter, Berlin, 417–424.Google Scholar
  88. Wagner, M. (1982) Agglutination of bacteria by a sialic acid- specific lectin of the snail Cepaea hortensis, Acta Histochem., 71: 35–39.PubMedGoogle Scholar
  89. Wu, A. M., Kabat, E. A., Gruezo, F. G. and Poretz, R. D. (1981) Immunochemical studies on the reactivities and combining sites of D-galacto-pyranose- and 2-acetamido- 2-deoxy-D- galacto-pyranose-specific lectin purified from Sophora japonica seeds, Arch.Biochem.Biophys., 209: 191–203.PubMedCrossRefGoogle Scholar
  90. Wu, A. M., Kabat, E. A., Pereira, M. E. A., Gruezo, F. G. and Liao, J. (1982) Immunochemical studies on blood groups: internal structure and immunological properties of water-soluble human blood group A substance studied by Smith degradation, liberation and fractionation of oligosaccharides and reaction with lectins, Arch.Biochem. Biophys., 215: 390–404.PubMedCrossRefGoogle Scholar
  91. Yamakawa, T., Irie, R. and Iwanaga, M. (1960) Chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. Silicic acid chromatography of mammalian stroma glycolipides, J.Biochem., 48: 490–507.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Mats Lindahl
    • 1
  • Reinhard Brossmer
    • 2
  • Torkel Wadström
    • 1
  1. 1.Department of Veterinary MicrobiologySwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Department of BiochemistryUniversity of HeidelbergHeidelbergWest-Germany

Personalised recommendations