Advertisement

The Separation of Immunocyte Subpopulations by Use of Various Lectins

  • Toshiaki Osawa
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 228)

Abstract

Recent development in immunology has revealed that immune responses can develop only after complicated cell-cell interactions between various subpopulations of immune-competent cells. Elucidation of the molecular mechanisms of these cell-cell interactions requires the separation of these cell subpopulations, and precise knowledge on their biological characteristics and on the factors secreted by them which mediate the cell-cell interactions. Furthermore, for the treatment of diseases which are caused by or at least related to a functional abnormality of certain subpopulation of immunocytes, adoptive transfer of the cell subpopulation in question may be effective.

Keywords

Spleen Cell Sialic Acid Residue Mixed Lymphocyte Culture Mouse Spleen Cell Dolichos Biflorus Agglutinin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schnebli, H.P. and Dukor, P. (1972). Plant agglutinins used to distinguish between different classes of mouse lymphocytes. Eur. J. Immunol. 2:607–609.PubMedCrossRefGoogle Scholar
  2. 2.
    Bourguignon, L.Y.W., Rader, R.L. and McMahon, J.T. (1979). Rapid separation of mouse T and B lymphocytes using wheat germ agglutinin. J. Cell. Physiol. 99:95–100.PubMedCrossRefGoogle Scholar
  3. 3.
    Reisner, Y., Ravid, A. and Sharon, N. (1976). Use of soybean agglutinin for-the separation of mouse B and T lymphocytes. Biochem. Biophys. Res. Commun. 72:1585–1591.PubMedCrossRefGoogle Scholar
  4. 4.
    Hishinuma, A., Imai, Y., Nakano, T. and Osawa, T. (1983). The reactivities of Bauhinia purpurea and Lens culinaris lectins to mouse B lymphocytes and their subsets. Int. Arch. Allergy & Appl. Immunol. 72: 330–335.CrossRefGoogle Scholar
  5. 5.
    Irimura, T., Kawaguchi, T., Terao, T. and Osawa, T. (1975). Carbohydrate binding specificity of the so-called galactose-specific phytohemagglutinins. Carbohyd. Res. 39:317–327.CrossRefGoogle Scholar
  6. 6.
    Gronowicz, E. and Coutinho, A. (1975). Functional analysis of B cell heterogeneity. Transplant. Rev. 24:3–40.PubMedGoogle Scholar
  7. 7.
    Kobo, R.T., Yamaga, K.M. and Moore, R.E., Jr. (1979). Differential affinity of murine lymphocyte membrane I and I for the lentil lectin. Mol. Immunol. 16:107–112.CrossRefGoogle Scholar
  8. 8.
    Dutton, R.W. (1972). Inhibitory and stimulatory effects of concanavalin A on the response of mouse spleen cell suspensions to antigen I. Characterization of the inhibitory cell activity. J. Exp. Med. 136:1445–1460.PubMedCrossRefGoogle Scholar
  9. 9.
    Nakano, T., Oguchi, Y., Imai, Y. and Osawa, T. (1980). Induction and separation of mouse helper T cells by lectins. Immunology 40:217–222.PubMedGoogle Scholar
  10. 10.
    Cunngham, A.J. and Szenberg, A. (1968). Further improvements in the plaque technique for detecting single antibody-formingcells. Immunology 14:599–600.Google Scholar
  11. 11.
    Raff, M.C. (1971) Surface antigenic markers for distinguishing T and B lymphocytes in mice. Transplant. Rev. 6:52–80.PubMedGoogle Scholar
  12. 12.
    Gershon, R.K. (1974). T cell control of antibody production. In Contemporary Topics in Immunobiology (Edited by Cooper, M.D. and Warner, N.L.), Vol. 3, pp. 1–40. Plenum Publishing Corp., New York.Google Scholar
  13. 13.
    Erb, P., Meier, B., Krause, D., von Boehmer, H. and Feldmann, M. (1978). Nature of T cell-macrophage interaction in helper cell induction in vitro. I. Evidence for genetic restriction of T cell-macrophage interaction prior to T cell priming. Eur. J. Immunol. 8:786–792.PubMedCrossRefGoogle Scholar
  14. 14.
    Yamamoto, K., Tsuji, T. and Osawa, T. (1982). Requirement of the core structure of a complex-type glycopeptide for the binding to immobilized lentil and pea lectins. Carbohyd. Res. 19:229–234.Google Scholar
  15. 15.
    Katagiri, Y., Yamamoto, K., Tsuji, T. and Osawa, T. (1984). Structural requirements for the binding of glycopeptides to immobilized Vicia faba (fava) lectin. Carbohyd. Res. 129:257–265.CrossRefGoogle Scholar
  16. 16.
    Shirai, T. and Mellors, R.C. (1971). Natural thymocytotoxic autoantibody and reactive antigen in New Zealand Black and other mice. Proc. Natl. Acad. Sci. 68:1412–1415.PubMedCrossRefGoogle Scholar
  17. 17.
    Shirai, T. and Mellors, R.C. (1972). Natural cytotoxic autoantibody against thymocytes in NZB mice. Clin. Exp. Immunol. 12:133–152.PubMedGoogle Scholar
  18. 18.
    Klassen, L.W., Krakauer, R.S. and Steinberg, A.D. (1977). Selective loss of suppressor cell function in New Zealand mice induced by NTA. J. Immunol. 119:830–837.PubMedGoogle Scholar
  19. 19.
    Shirai, T., Hayakawa, K., Okumura, D. and Tada, T. (1978). Differential cytotoxic effect of natural thymocytotoxic autoantibody of NZB mice on functional subsets of T cells. J. Immunol. 120:1924–1929.PubMedGoogle Scholar
  20. 20.
    Imai, Y., Nakano, T., Sawada, J. and Osawa, T. (1980). Specificity of natural thymocytotoxic autoantibody developed in New Zealand Black mice. J. Immunol. 124:1556–1561.PubMedGoogle Scholar
  21. 21.
    Terao, T., Irimura, T. and Osawa, T. (1975). Purification and characterization of a hemagglutinin from Arachis hypogaea. Hoppe-Seyler’s Z. Physiol. Chem. 356:1685–1693.CrossRefGoogle Scholar
  22. 22.
    Pereira, M.E.A., Kabat, E.A., Lotan, R. and Sharon, N. (1976). Immunochemical studies on the specificity of the peanut (Arachis hypogaea) agglutinin. Carbohyd. Res. 51:107–118.CrossRefGoogle Scholar
  23. 23.
    Nakanishi, A., Imai, Y., Nakano, T. and Osawa, T. (1982). Induction of autoimmune phenomena in normal mice treated with natural thymocototoxic autoantibody. J. Immunol. 128, 2137–2141.PubMedGoogle Scholar
  24. 24.
    Imai, Y., Oguchi, Y., Nakano, T. and Osawa, T. (1980). Age-dependent changes of the levels of suppressor and helper t cells in New Zealand Black mice. Jap. J. Exp. Med. 50:415–421.PubMedGoogle Scholar
  25. 25.
    Imai, Y., Oguchi, Y., Nakano, T., Sawada, J. and Osawa, T. (1979). Separation of mouse T cell subsets by a fluorescent activated cell sorter using fluorescence-labeled peanut agglutinin. Immunological Communications 8:495–504.PubMedGoogle Scholar
  26. 26.
    Nakano, T., Imai, Y., Naiki, M. and Osawa, T. (1980). Characterization of mouse helper and suppressor T cell subsets separated by lectins. J. Immunol. 125:1928–1932.PubMedGoogle Scholar
  27. 27.
    Reisner, Y., Linker-Israeli, M. and Sharon, N. (1976). Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin. Cell. Immunol. 25:129–134.PubMedCrossRefGoogle Scholar
  28. 28.
    Nowak, T.P. and Barondes, S.H. (1975). Agglutinin from Limulus polyphenus. Purification with formalinized horse erythrocytes as the affinity adsorbent. Biochim. Biophys. Acta. 393:115–123.PubMedGoogle Scholar
  29. 29.
    Naiki, M., Marcus, D.M. and Ledeen, R.J. (1974). Properties of antisera to ganglioside GM1 and asialo GM1. J. Immunol. 113:84–93.PubMedGoogle Scholar
  30. 30.
    Kimura, A., Wigzell, H., Holmquist, G., Ersson, B. and Carlsson, P. (1979). Selective affinity fractionation of murine cytotoxic T lymphocytes (CTL). Unique lectin specific binding of the CTL associated surface glycoprotein T 145. J. Exp. Med. 149:473–484.PubMedCrossRefGoogle Scholar
  31. 31.
    Kimura, A., Qrn, A. and Holmquist, G. (1979). Unique lectin-binding characteristics of cytotoxic T lymphocytes allowing their distinction from natural killer cells and K cells. Eur. J. Immunol. 9:575–578.PubMedCrossRefGoogle Scholar
  32. 32.
    Kimura, A. and Wigzell, H. (1978). Cell surface glycoproteins of murine cytotoxic T lymphocytes I. T 145a new cell surface glycoprotein selectively expressed on Ly 1-2+ cytotoxic T lymphocytes. J. Exp. Med. 147:1418–1434.PubMedCrossRefGoogle Scholar
  33. 33.
    MacDonald, H.R., Mach, J.-P., Schreyer, M., Zaech, P. and Cerottini, J.-C. (1981). Flow cytofluorometric analysis of the binding of Vicia villosa lectin to T lymphoblasts: Lack of correlation with cytolytic function. J. Immunol. 126:883–886.PubMedGoogle Scholar
  34. 34.
    Lang, I., Banga, J.P., Varey, A.-M., Gunn, H., Cooke, A. and Roitt, I.M. (1982). Direct staining of mouse T lymphoblasts with fluores-ceinated Vicia villosa lectin. Immunology 46:769–776.PubMedGoogle Scholar
  35. 35.
    Kaufmann, Y. and Berke, G. (1981). Cell surface glycoproteins of cytotoxic T lymphocytes induced in vivo and in vitro. J. Immunol. 126:1443–1446.PubMedGoogle Scholar
  36. 36.
    Yamazaki, T., Imai, Y., Oguchi, Y., Nakano, T. and Osawa, T. (1983). Separation of mouse cytotoxic T cells by lectins. Carbohyd. Res. 120:269–281.CrossRefGoogle Scholar
  37. 37.
    Etzler, M.E. and Kabat, E.A. (1970). Purification and characterization of a lectin (plant hemagglutinin) with blood group A specificity from Dolichos biflorus. Biochemistry 9:869–877.PubMedCrossRefGoogle Scholar
  38. 38.
    Hammerström. (1972). Snail (Helix pomatia) hemagglutinin. Methods Enzymol. 28 (part B):368–383.CrossRefGoogle Scholar
  39. 39.
    Galbraith, W. and Goldstein, I.J. (1972). Lima bean (Phaselouslunatus) lectin. Methods Enzymol. 28 (part B):318–323.CrossRefGoogle Scholar
  40. 40.
    Lis, H., Sela, B.A., Sachs, L. and Sharon, N. (1970). Specific inhibition by N-acetyl-D-galactosamine of the interaction between soybean agglutinin and animal cell surfaces. Biochim. Biophys. Acta 211:582–585.PubMedCrossRefGoogle Scholar
  41. 41.
    Pereira, M.E.A., Kabat, E.A. and Sharon, N. (1974). Immunochemial studies on the specificity of soybean agglutinin. Carbohyd. Res. 37:89–102.CrossRefGoogle Scholar
  42. 42.
    Kaladas, P.M., Kabat, E.A., Kimura, A. and Ersson, B. (1981). The specificity of the combining site of the lectin from Vicia villosa seeds which reacts with cytotoxic T-lymphoblasts. Mol. Immunol. 18:969–977.PubMedCrossRefGoogle Scholar
  43. 43.
    Okada, T., Ezawa, K., Imai, Y. and Osawa, T.: unpublished results.Google Scholar
  44. 44.
    Gillis, S. and Smith, K.A. (1977). Long-term culture of tumor-specific cytotoxic T-cells. Nature (Lond.) 268:154–155.CrossRefGoogle Scholar
  45. 45.
    Wagner, H. and Rollinghoff, M. (1978). T-T-cell interaction during in vitro cytotoxic allograft response. I. Soluble products from activated Lyl T cells trigger autonomously antigen-primed Ly23 T cells to cell proliferation and cytolytic activity. J. Exp. Med. 148:1523–1538.PubMedCrossRefGoogle Scholar
  46. 46.
    Rosenberg, S.A., Schwarz, S. and Spiess, P.J. (1978). In vitro growth of murine T cells. II. Growth of in vitro sensitized cells cytotoxic for alloantigens. J. Immunol. 121:1951–1955.PubMedGoogle Scholar
  47. 47.
    Mazumder, A and Rosenberg, S.A. (1984). Successful immunotherapy of natural killer-resistant established pulmonary melanoma metastases by the intravenous adoptive transfer of syngeneic lymphocytes activated in vitro by interleukin 2. J. Exp. Med. 159:495–507.PubMedCrossRefGoogle Scholar
  48. 48.
    Mule, J.J., Shu, S., Scjwarz, S.L. and Rosenberg, S.A. (1984). Successful adoptive immunotherapy of established pulmonary metastases of multiple sarcomas with lymphokine-activated killer cells and recombinant interleukin-2. Science 225:1487–1489.PubMedCrossRefGoogle Scholar
  49. 49.
    Peatkau, V., Show, J., Mills, G. and Caplan, B. (1980). Cellular origins and targets of costimulator (IL 2). Immunol. Rev. 51:157–175.CrossRefGoogle Scholar
  50. 50.
    Shaw, J., Caplan, B., Peatkau, V., Pilarski, L.M., Delovitch, T.L. and Menzie, I.F.C. (1980). Cellular origins of co-stimulator (IL 2) and its activity in cytotoxic T lymphocyte responses. J. Immunol. 124:2231–2239.PubMedGoogle Scholar
  51. 51.
    Wagner, H. and Rollinghoff, M. (1978). T-T cell interactions during in vitro cytotoxic allograft responses. I. Soluble production from activated Ly 1 T cells trigger autonomously antigen-primed Ly 23 T cells to cell proliferation and cytolytic activity. J. Exp. Med. 148:1523–1538.PubMedCrossRefGoogle Scholar
  52. 52.
    Jandinski, J., Cantor, H., Tadakuma, T., Peavy, D.L. and Pierce, C.W. (1976). Separation of helper T cells from suppressor T cells expressing different Ly components. I. Polyclonal activation: Suppressor and helper activities are inherent properties of distinct T-cell subclasses. J. Exp. Med. 1421:1382–1390.CrossRefGoogle Scholar
  53. 53.
    Bodeker, B.G.D., Eijk, R.V.W. and Muhlradt, P.F. (1980). Mitogenic effects of partially purified interleukin 2 on thymocyte sub-populations and spleen T cells of mouse. Eur. J. Immunol. 10:702–707.PubMedCrossRefGoogle Scholar
  54. 54.
    Conlon, P.J., Henney, C.S. and Gillis, S. (1982). Cytokine-dependent thymocyte responses: characterization of IL 1 and IL 2 target subpopulations and mechanism of action. J. Immunol. 128:797–801.PubMedGoogle Scholar
  55. 55.
    Imai, Y. and Osawa, T. (1983). Enrichment of IL 2 producer T cells from mouse spleen by use of Bauhinia purpurea lectin. Scand. J. Immunol. 18:217–224.PubMedCrossRefGoogle Scholar
  56. 56.
    Yamaguchi, N. and Osawa, T. (1984). Separation and characterization of macrophage precursors and of IL 2-responding cells from nylon wool-nonadherent murine spleen cells by using Bauhinia purpurea agglutinin. Int. Archs. Allergy appl. Immunol. 75:309–316.CrossRefGoogle Scholar
  57. 57.
    Osawa, T., Irimura, T. and Kawaguchi, T. (1978). Bauhinia pupurea hemagglutinin. Methods Enzymol. 50:367–372.PubMedCrossRefGoogle Scholar
  58. 58.
    Ezawa, K., Toyoshima, S. and Osawa, T. (1983). Establishment and characterization of continuous murine non-specific suppressor T cell lines. Jap. J. Exp. Med. 53:139–146.PubMedGoogle Scholar
  59. 59.
    Larsson, E.-L. (1981). Mechanism of T cell activation. II. Antigen-and lectin-dependent acquisition of responsiveness to TCGF is a nonmitogenic, active response of resting T cells. J. Immunol. 126:1323–1326.PubMedGoogle Scholar
  60. 60.
    Altmann, A., Theofilopoulos, A.N., Weiner, R., Katz, D.H. and Dixon, F.J. (1981). Analysis of T cell function in autoimmune murine strains. Defects in production of and responsiveness to IL 2. J. Exp. Med. 154:791–808.CrossRefGoogle Scholar
  61. 61.
    Wofsy, D., Murphy, E.D., Roths, J.B., Dauphinee, M.J., Kipper, S.B. and Talal, N. (1981). Deficient interleukin 2-activity in MRL/Mp and C57BL/6J mice bearing the lpr gene. J. Exp. Med. 154:1671–1680.PubMedCrossRefGoogle Scholar
  62. 62.
    Nakanishi, A., Imai, Y. and Osawa, T.: unpublished results.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Toshiaki Osawa
    • 1
  1. 1.Division of Chemical Toxicology and Immunochemistry Faculty of Pharmaceutical SciencesUniversity of ToykoToykoJapan

Personalised recommendations