Analysis of Complex Carbohydrate Primary and Secondary Structure via Two-Dimensional Proton Nuclear Magnetic Resonance Spectroscopy

  • Theodore A. W. Koerner
  • Robert K. Yu
  • J. Neel Scarsdale
  • Peter C. Demou
  • James H. Prestegard
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 228)


The growing interest in the biological function of cell surface complex carbohydrates has stimulated the constant search for new methods for analyzing their primary and secondary structures. To determine the primary structure of a complex carbohydrate, it is necessary to establish the composition and configuration of its sugar residues, and the sequence and linkage sites of its oligosaccharide chain. This information has traditionally been obtained by application of a combination of such procedures as compositional analysis by gas-liquid chromatography, mass spectrometry, permethylation studies, Smith degradation, partial acid or enzyme hydrolysis, optical rotation measurements, etc. However, these techniques are time-consuming, require elaborate derivatization of the substance, and access to many different instruments. Furthermore, these procedures do not afford secondary structural information (conformation) which is important in understanding the biological activities of these compounds.


Nuclear Magnetic Resonance Cross Peak Nuclear Magnetic Resonance Spectroscopy Complex Carbohydrate Proton Nuclear Magnetic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aue, W.P., Bartholdi, E., and Ernst, R. R. (1976) Two-dimensional spectroscopy. Application to nuclear magnetic resonance, J. Chem. Phys. 64.:2229–2246.CrossRefGoogle Scholar
  2. Bax, A. (1982) “Two-dimensional Nuclear Magnetic Resonance in Liquids”, Riedel Publishing, Boston.Google Scholar
  3. Bax, A., Freeman, R., and Morris, G. (1981) Correlation of proton chemical shifts by two-dimensional Fourier- transform NMR, J. Magn. Reson. 42:164–168.CrossRefGoogle Scholar
  4. Bax, A., and Freeman, R. (1981) Investigation of complex networks of spin-spin coupling by two-dimensional NMR, J. Magn. Reson. 44:542–561.CrossRefGoogle Scholar
  5. Bax, A., and Lerner, L. (1986) Two-dimensional nuclear magnetic resonance spectroscopy, Science 232:960–967.PubMedCrossRefGoogle Scholar
  6. Benn, R., and Günther, H. (1983) Modern pulse methods in high-resolution NMR spectroscopy, Agnew. Chem. Int. Ed. Engl. 22:350–380.CrossRefGoogle Scholar
  7. Bernstein, M.A., and Hall, L.D. (1982) De novo sequencing of oligosaccharide by proton NMR spectroscopy, J. Am. Chem. Soc. 104:5553–5555.CrossRefGoogle Scholar
  8. Bock, K., Arnurp, J., and Lönngren, J. (1982) The preferred conformation of oligosaccharides derived from the complex-type carbohydrate portions of glycoproteins, Eur. J. Biochem. 129:171–178.PubMedCrossRefGoogle Scholar
  9. Bruch, R.C., and Bruch, M.D. (1982) Two-dimensional J-resolved proton NMR-spectroscopy of oligomannosidic glycopeptides, J. Biol. Chem. 257:3409–3413.PubMedGoogle Scholar
  10. Carver, J.P., and Brisson, J.R. (1984) The three-dimensional structure of N-linked oligosaccharides, in: “The Biology of Carbohydrates”, V. Ginsberg and P.W. Robbins, eds., Vol. 2, pp 289–390, Wiley, New York.Google Scholar
  11. Clausen, H., Levery, S.B., McKibbin, J.M., and Hakomori, S. (1985) Blood group A determinants with mono- and difucosyl type 1 chain in human erthrocyte membrane, J. Biol. Chem. 24:3578–3586.Google Scholar
  12. Dabrowski, J. and Hanfland, P. (1982) Structure determination of a ceramide pentadecasaccharide by two-dimensional resolved and J-correlated NMR spectroscopy, FEBS Lett. 142:138–142.PubMedCrossRefGoogle Scholar
  13. Dabrowski, J., Hanfland, P., and Egge, H. (1982) Analysis of glycosphingolipids by high-resolution proton nuclear magnetic resonance spectroscopy, Meth. Enzymol. 83:69–86.PubMedCrossRefGoogle Scholar
  14. Eich, G., Bodenhauser, G., and Ernst, R.R. (1982) Exploring nuclear-spin systems by relayed magnetization transfer, J. Am. Chem. Soc. 104:3731–3732.CrossRefGoogle Scholar
  15. Gasa, S., Mitsuyama, T., and Makita, A. (1983) Proton nuclear magnetic resonance of neutral and acidic glycosphingolipids, J. Lipid Res. 24:174–182.PubMedGoogle Scholar
  16. Gasa, S., Nakamura, M., Makita, A., Ikura, M., and Hikichi, K. Complete structural analysis of globoseries glycolipids by two-dimensional nuclear magnetic resonance, Eur. J. Biochem. 155:603–611.PubMedCrossRefGoogle Scholar
  17. Geyer, R., Geyer, H., Stirm, S., Hunsmann, G., Schneider, J., Dabrowski, U., and Dabrowski, J. (1984) Major oligosaccharides in the glycoprotein of friend murine leukemia-virus. Structure elucidation by one-dimensional and two-dimensional proton nuclear magnetic resonance and methylation analysis, Biochemistry 23:5628–5637.PubMedCrossRefGoogle Scholar
  18. Hall, L.D., Morris, G.A., and Sukumar, S. (1980) Resolution and assignment of the 270 MHz proton spectrum of cellobiose by, homonuclear and heteronuclear two- dimensional NMR, J. Am. Chem. Soc. 102:1745–1747.CrossRefGoogle Scholar
  19. Homans, S.W., Dwek, R.A., Fernandez, D.L., and Rademacher, T.W. (1983) Solution conformation of biantennary complex type oligosaccharides. Determination of major conformers about the glycosidic linkages, FEBS Lett. 164:231–235.CrossRefGoogle Scholar
  20. Hori, T., Sugita, M., Ando, S., Tsukada, K., Shiota, K., Tsuzuki, M., and Iatsaka, O. (1983) Isolation and characterization of a 4-O-methyl glucuronic acid-containing glycosphingolipid from spermatozoa of a fresh water bivalve, Hyriopsis schlegelii, J. Biol. Chem. 258:2239–2245.PubMedGoogle Scholar
  21. Jeener, J., Meier, B.H., Bachman, P., and Ernst, R.R. (1979) Investigation of exchange process by two-dimensional NMR spectroscopy, J. Chem. Phys. 71:4546–4553.CrossRefGoogle Scholar
  22. Jeffery, G. A. and Takagi, S. (1978) Hydrogen-bond structure in carbohydrate crystals, Acc. Chem. Res. 11:2 64–270.Google Scholar
  23. Jelinski, L.W. (1984) Modern NMR spectroscopy, Chem. Eng. News 62 (Nov. 5):26–47.CrossRefGoogle Scholar
  24. Koerner, T.A.W., Prestegard, J.H., Demou, P.C., and Yu, R.K. (1983a) High resolution proton NMR studies of gangliosides. 1. Use of homonuclear two-dimensional spin-echo J-correlated spectroscopy for determination of residue composition and anomeric configuration, Biochemistry 22:2676–2687.PubMedCrossRefGoogle Scholar
  25. Koerner, T.A.W., Prestegard, J.H., Demou, P.C., and Yu, R.K. (1983b) High-resolution proton NMR studies of gangli-osidesl 2. Use of two-dimensional nuclear Overhauser effect spectroscopy and sialylation shifts for determination of oligosaccharide sequence and linkage sites, Biochemistry 22: 2687–2690.PubMedCrossRefGoogle Scholar
  26. Koerner, T.A.W., Scarsdale, J.M., Prestegard, J.H., and Yu, R.K. (1984) Structure determination of glycolipids using two-dimensional proton NMR spectroscopy: globoside, J. Carbohydr. Chem. 3:565–580.CrossRefGoogle Scholar
  27. Koerner, T.A.W., Prestegard, J.H., and Yu, R.K. (1987) Analysis of oligosaccharide structure via two-dimensional proton nuclear magnetic resonance spectroscopy, Meth. Enzymol., 138:38–59 (Complex Carbohydrates, Part E).CrossRefGoogle Scholar
  28. Kumar, A., Ernst, R.R., and Wuthrich, K. (1980) A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules, Biochem. Biophys. Res. Commun. 95:1–6.PubMedCrossRefGoogle Scholar
  29. Lemieux, R.U., Bock, K., Delbaere, L.T.J., Koto, S., and Rao, V.S. (1980) The conformation of oligosaccharides related to the ABH and Lewis human blood group determinants, Can. J. Chem. 58: 631–653.Google Scholar
  30. Maggio, B., Ariga, T., and Yu, R.K. (1985) Molecular parameters and conformation of globoside and asialo-GMi, Arch. Biochem. Biophys. 241: 14–21.CrossRefGoogle Scholar
  31. Nagayama, K., Kumar, A., Wuthrich, K., and Ernst, R.R. (1980) Two-dimensional spin-echo correlated spectroscopy (SECSY) for 1H NMR studies of biological molecules, J. Magn. Reson. 40:321–334.CrossRefGoogle Scholar
  32. Ong, R.L. and Yu, R.K. (1986) Proton NMR assignments of Gmi- oligosaccharide in deuterated water at 500 MHz by two- dimensional spin-echo ¿-correlated spectroscopy, Arch. Biochem. Biophys. 245:157–166.PubMedCrossRefGoogle Scholar
  33. Prestegard, J.H., Koerner, T.A.W., Demou, P.C., and Yu, R.K. (1982) Complete analysis of oligsaccharide primary structure using two-dimensional high-field proton NMR, J. Am. Chem. Soc. 104:4993–4995.CrossRefGoogle Scholar
  34. Piantini, U., Sorensen, O.W., and Ernst, R.R. (1982) Multiple quantum filters for elucidating NMR coupling networks, J. Am. Chem. Soc. 104:6800–6801.CrossRefGoogle Scholar
  35. Ranee, M., Sorenson, O.W., Bodenhausen, G., Wagner, G., Ernst, R.R., and Wüthrich, K. (1983) Improved spectral resolution in COSY H-l NMR spectra of proteins via double quantum filtering, Biochem. Biophys. Res. Commun. 117:479–485.CrossRefGoogle Scholar
  36. Sabesan, S., Bock, K., and Lemieux, R.U. (1984) The conformational properties of the gangliosides GM2 and GM1 based 1H and 13C nuclear magnetic resonance studies, Can. J. Chem. 62:1034–1045.CrossRefGoogle Scholar
  37. Scarsdale, J.N., Ando, S., Hori, T., Yu, R.K., and Prestegard, J.H. (1986a) 1H NMR characterization of the structure of a novel octasaccharide glycolipid isolated from the spermatozoa of bivalves, Carbohydr. Res., in press.Google Scholar
  38. Scarsdale, J.N., Yu, R.K., and Prestegard, J.H. (1986b) Structural analysis of a potentially flexible glycolipid headgroup using an NMR pseudo energy approach, J. Am. Chem. Soc., in press.Google Scholar
  39. Sheatly, F., Scott, J.E., Jeanloz, R.W., Walkerna, E. (1982) Secondary structure in glycosaminoglycuronans: NMR spectra in dimethyl-sulfoxide of disaccharides related to hyaluronic acid and chrondroitin sulfate, Carbohydr. Res. 99:1–11.CrossRefGoogle Scholar
  40. Sweeley, C.C. and Nunez, H.A. (1985) Structural analysis of glycoconjugates by mass spectrometry and nuclear magnetic resonance spectroscopy, Ann. Rev. Biochem. 54:765–801.PubMedCrossRefGoogle Scholar
  41. Thorgersen, H., Lemieux, R.U., Bock, K., and Meyer, B. (1982) Further justification for the exo-anomeric effect. Conformational analysis based on nuclear magnetic resonance spectroscopy of oligosaccharides, Can. J. Chem. 60:44–57.CrossRefGoogle Scholar
  42. Vliegenthart, J.F.G., Dorland, L., and Van Halbeek, H. (1983) High-resolution, 1H-nuclear magnetic resonance spectroscopy as a tool in the structural analysis of carbohydrates related to glycoproteins, Adv. Carbohydr. Chem. Biochem. 41:209–374.CrossRefGoogle Scholar
  43. Wagner, G. (1983) Two-dimensional relayed coherence transfer spectroscopy of a protein, J. Magn. Reson. 55:151–156.CrossRefGoogle Scholar
  44. Wise, W.B., Pfeffer, P.E., and Kovac, P. (1984) A study of methyl β-xylobioside: An illustrative example of two-dimensional NMR methods, J. Carbohydr. Chem. 3:513–524.CrossRefGoogle Scholar
  45. Yamada, A., Dabrowski, J., Hanfland, P., and Egge, H. (1980) Preliminary results of J-resolved, two-dimensional 1H-NMR studies on glycosphingolipids, Biochem. Biophys. Acta 618:473–479.Google Scholar
  46. Yu, R.K., Koerner, T.A.W., Demou, P.C., Scarsdale, J.N., and Prestegard, J.H. (1984) Recent advances in structural analysis of gangliosides: primary and secondary structures, Adv. Exp. Med. Biol. 174:87–102.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Theodore A. W. Koerner
    • 1
  • Robert K. Yu
    • 1
  • J. Neel Scarsdale
    • 1
  • Peter C. Demou
    • 1
  • James H. Prestegard
    • 1
  1. 1.Departments of Neurology (School of Medicine) and ChemistryYale UniversityNew HavenUSA

Personalised recommendations