Structural Elucidation of Complex Carbohydrates

  • Vernon N. Reinhold
  • Sitthivet Santikarn
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 228)


The ability to recognize the chemical markers that distinguish “self” from “foreign” molecules is the first and most important step in the initiation of an immune response. The recognition process essentially involves two components, the antibody/receptor and the antigen. The complete structures of these two components need to be established so that the highly specific process can be understood at the molecular level. In the past decade the application of recombinant DNA technology to dissect the immune system has provided a great deal of insight into the structure and function of antibodies and antigens.


Fast Atom Bombardment Liquid Matrix Fast Atom Bombardment Mass Spectrometry Belt Speed Fast Atom Bombardment Mass Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barber, M., Bordoli, R.S., Sedgwick, R.D. and Tyler, A.N. (1981). Fast Atom Bombardment of Solids as an Ion Source in Mass Spectrometry, Nature, (London) 293, 270–275.CrossRefGoogle Scholar
  2. 2.
    Carr, S.A. and Reinhold, V.N. (1984). Structural Characterization of Glycosphingolipids by Direct Chemical Ionization Mass Spectrometry, Biomed. Mass Spectrom., ll, 633–642.CrossRefGoogle Scholar
  3. 3.
    Carr, S.A., Reinhold, V.N., Green, B.N. and Hass, J.R. (1985). Enhancement of Structural Information in FAB Ionized Carbohydrate Samples by Neutral Gas Collision. Biomed. Mass Spectrom, 12, 288–295.PubMedCrossRefGoogle Scholar
  4. 4.
    Chan, K.W.S. and Cook, R. D. (1983). Factors Affecting Mass Spectral Sensitivity for Ions Sampled by Field Evaporation from a Liquid Matrix, Anal. Chem. 55, 1306–1309CrossRefGoogle Scholar
  5. 5.
    Cooks, R.G. (1978). Collision Spectroscopy, (e d. R.G. Cooks), Plenum Press, New York, p. 458.Google Scholar
  6. 6.
    Dell, A. and Ballou, C.E. (1983a). Fast Atom Bombardment, Negative-Ion, Mass Spectrometry of the Mycobacterial O-Methyl-D-Glucose Polysaccharide and Lipopolysaccharides, Carbohydr. Res., l20, 95-lll.CrossRefGoogle Scholar
  7. 7.
    Dell, A. and Ballou, C.E. (1983b). Fast Atom Bombardment Mass Spectrometry of 6–0-Methylglucose polysaccharide, Biomed. Mass Spectrom., 10, 50–56.CrossRefGoogle Scholar
  8. 8.
    Dell, A., Oates, J., Lugowski, C., Romanowska, E., Kenne, L. and Lindberg, B. (1984). The Enterobacterial Commontigen, A Cyclic Polysaccharide, Carbohydr. Res., 133, 95–104.PubMedCrossRefGoogle Scholar
  9. 9.
    Dell, A. and Taylor, G.W. (1983). High-Field Magnet Mass Spectrometry of Biological Molecules, Mass Spectrom. Rev., 3, 357–394.CrossRefGoogle Scholar
  10. 10.
    DeMark B.R. and Klein P.D. (1981). Ammonia gas: An Improved Reagent for Chemical Ionization Mass Spect rometry of Bile Acid Methyl Ester Acetates, J. Lipid Res., 22, 166–177.PubMedGoogle Scholar
  11. 11.
    Egge, H., Dell, A. and von Nicolai, H. (1 983). Fucose Containing Oligosaccharides from Human Milk. I. Separation and Identification of New Constituents, Arch. Biochem. Biophys., 224, 235–253.PubMedCrossRefGoogle Scholar
  12. 12.
    Gower, J. L. (1985). Matrix Compounds for Fast Atom Bombardment Mass Spectrometry, Biomed. Mass Spectrom., 12, 191–196.CrossRefGoogle Scholar
  13. 13.
    Hanfland, P., Dabrowski, U., Peter-Katalinic, J., Kordowicz, M., Niermann, H., Egge, H., Dabrowski, J. (1983a). Isolation and Characterization of Three Different Blood Group B Active Complex Glycosphingolip ids from Human Eryt hrocyte Membranes, Proc. 7t h Int. Symp.on Glycoconjugates, Lund, S weden, Chester, M.A., Heinegard, D., Lundblad, A., Svensson, S., Ed s.: pp. 411–412.Google Scholar
  14. 14.
    Hanfland, P., Dabrowski, U., Kordowicz, M., Peteatalinic, J., Dabrowski, J., Egge, H. (1983b). Purification and Structural Elucidation of Th re e Different Blood Group B and I or i Glycosphingolipids from Rabbit Erythrocyte Membranes. Proc. 7th Int. Symp. on Glycoconjugates, L un d, Sweden, Chester, M.A., Heinegard, D., Lundblad, A., Svensson, S., Eds.; pp. 413–414.Google Scholar
  15. 15.
    Harada, K., Ito, S., Takeda, N., Suzuki, M. and Tatematsu, A. (1983). Sequence Determination of Permethylated Oligosaccharides by Chemical I onization Mass Spectrometry, Biomed. Mass Spectrom., 10, 5–12.CrossRefGoogle Scholar
  16. 16.
    Harada, K., Ito, S., Suzuki, M. and Iwashita, T. (1983). Structural Investigation o f t he Antibiotic Sporaviridin. VII. Structural Studies on the Constituent Pentasaccharides, Viridopentoses, Cherm. Pharm. Bull. (Japan), 31, 3829–3843.Google Scholar
  17. 17.
    Harrison, A.G. (1983). Chemical Ionization Mass SpectrometryCRC Press, Inc., Boca Raton, FL.Google Scholar
  18. 18.
    Hunt, D.F. (1974). “Reagent Gases for Chemical Ionization Mass Spec trometry,” in Advanc es in Mass Spectrometry(Ed. A. R. West), pp. 143–152. Applied Science Publishers, London.Google Scholar
  19. 19.
    Jensen, N. J., Tomer, K.B. and Gross, M.L. (1985). Gasphase Ion Decomposition Occurring Remote to a Charged Site, J. Am. Cherm. Soc., 107, 1863–1868.CrossRefGoogle Scholar
  20. 20.
    Kamerling, J.P., Heerma, W., Vliegenthart, J.F.G., Green, B.N., Lewis, LA.S., Strecker, G. and Spik, G. (1983). Fast Atom Bombardment Mass Spectrometry of Carbohydrate Chains Derived from Glycoproteins, Biomed. Mass Spectrom., 10, 420–425.CrossRefGoogle Scholar
  21. 21.
    Karlsson, K.-A., Pascher, I., Pimlott, W. and Samuelsson, B.E. (1974). Use of Mass Spectrometry for the Carbohydrate Composition and Sequence Analysis of 2-Hydroxy Fatty Acids, Biomed. Mass Spectrom., l, 49–55.PubMedCrossRefGoogle Scholar
  22. 22.
    Keough, T. (1985). Cationization of Organic Molecules Using Fast Atom Bombardment Mass Spectrometry, Anal. Chem., 57, 2027–2034.CrossRefGoogle Scholar
  23. 23.
    Kondrat, R.W. and Cooks, R. G. (1978) Direct Analysis of Mixtures by Mass Spectrometry, Anal. Cherm., 50, 81A-92A.CrossRefGoogle Scholar
  24. 24.
    Miller, J. K., Kennedy, E. and Reinhold, V. N. (1986). Osmotic Adaption by Gram-Negative Bacteria: Possible Role for periplasmic Oligosaccharides, Science, 231, 48–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Madden, W. H., Schwartz, H. L. and Evans, S. (1976). Direct Analysis of Liquid Chromatographic Effluents, J. Chromatogr., 122, 389–396.CrossRefGoogle Scholar
  26. 26.
    McLafferty, F.W. (1983). Tandem Mass Spectrometry, Wiley-Interscience, New York.Google Scholar
  27. 27.
    McLafferty, F.W. and Bockhoff, F.M. (1978). Separation/Identification System f or Complex Mixtures Using Mass Separation and Mass Characterization, Anal. Chem., 50, 69–76.CrossRefGoogle Scholar
  28. 28.
    Munson, B. (1977). Chemical Ionization Mass Spectrometry: Ten Years Later, Anal. Chem., 49, 772A-776A.CrossRefGoogle Scholar
  29. 29.
    Reinhold, V.N., Coles, E. and Carr, S.A. (1982). New Techniques for Oligosaccharide Sequencing, J. Carbohydr. Chem., 2, 1–18.CrossRefGoogle Scholar
  30. 30.
    Rudewicz, P. and Munson, B. (1985). Neutral Reactions in Gas Chromatography/Chemical Ionization Mass Spectrometry, Anal. Chem., 57, 786–789.CrossRefGoogle Scholar
  31. 31.
    Santikarn, S., Her, G.-R. and Reinhold, V.N. (1986). Fast Atom Bombardment Mass Spectrometry o f Complex Carbohydrates Desorbed from a Moving Belt. (Manuscript in preparation).Google Scholar
  32. 32.
    Santikarn, S., Trimble, R.B. and Reinhold, V.N. (1985). Unpublished results.Google Scholar
  33. 33.
    Stroh, J.G., Cook, J. C., Milberg, R.M., Brayton, L., Kihara, T., Haung, Z. and Rinehart, K.L., Jr. (1985). On-Line Liquid Chromatography/Fast Atom Bombardment Mass Spectrometry, Anal. Chem., 57, 985–991.CrossRefGoogle Scholar
  34. 34.
    Tabet, J.C. and Fraisse, C. (1981). Reaction. of Cyclohexanone with NH4Ion Under Chemical Ionization Conditions. 1. Formation of Protonated Unsubstituted Imines, Org. Mass Spectrorm., 16, 45–47.CrossRefGoogle Scholar
  35. 35.
    Van Langenhove, A., and Reinhold, V. N. (1985a). Determination of Polysaccharide Linkage and Branching by Reductive Depolymerization: GC and GC-MS Reference Data, Carbohydr. Res., 140, 1–20.CrossRefGoogle Scholar
  36. 36.
    van der Peyl, G. J.Q., Isa, K., Haverkamp, J. and Kistemaker, P. G. (1981). Gas Phase Ion /Molecule Reactions in Laser Desorption Mass Sp ectrometry, Org. Mass Spectrom., 16, 416–420.CrossRefGoogle Scholar
  37. 37.
    van der Peyl, G.J.Q., van der Zande, W. J., Hoogerbrugge, R. and Kistemaker, P. G. (1985). Kinetic Energy Distributions of Organic Ions Sputtered from Solids and Liquids. Int. J. Mass Spectrom. Ion Proc., 67, 147–159.CrossRefGoogle Scholar
  38. 38.
    Yost, R.A. and Enke, C.G. (1979). Triple Quadrupole Mass Spectrometry for Direct Mixture Analysis and Structural Elucidation, Anal. Chem., 51, 1251A–1264A.CrossRefGoogle Scholar
  39. 39.
    Yost, R.A. and Fetterolf, D.O. (1983). Tandem Mass Spectrometry (MS/MS). Mass Spectrom. Rev., 2, 1–45.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Vernon N. Reinhold
    • 1
  • Sitthivet Santikarn
    • 1
  1. 1.Department of NutritionHarvard School of Public HealthBostonUSA

Personalised recommendations