Glycolipids and Glycoproteins in Plasma Membrane of Hepatocellular Cancer

  • Tian-Jue Gu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 228)


The recent literature contains numerous studies of glycolipids and glycoproteins of tumor cells. Diverse changes in chemical composition and/or organization have been found in tumor cells of various sources: chemical and viral transformation in vitro and tumor tissues in vivo.1,2 They have incited wide interest although little is known about their exact biological significance. Theoretically, they may lead to an understanding of some essential problems, such as the malignant behavior of tumor cells and the role of gene mutation in the development of cancer. In addition, their practical potentialities as tumor markers has also been extensively explored.


Sialic Acid Hepatoma Cell Transferrin Receptor Lectin Activity Normal Liver Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Hakomori. Monoclonal antibodies directed to cell-surface carbohydrates, in “Monoclonal antibodies and functional cell lines.” pp. 67–100. R.H. Kennet, K.B. Bechtol, and T.J. McKaarn ed., Plenum Publishing, New York. (1984).Google Scholar
  2. 2.
    R.F. Irie, L.L. Sze, and R.E. Saxton. Human antibody to OFA-1, a tumor antigen, produced in vitro by Epstein- Barr virus-transformed human B-lymphoid cell lines. Proc. Natl. Acad. Sci. USA 79:5666–5670, (1982).PubMedCrossRefGoogle Scholar
  3. 3.
    Shun-zhang Yu. Epidemiology of primary liver cancer, in “Subclinical Hepatocellular Carcinoma,” Z.Y. Tang ed., pp. 189–211. China Academic Publishers, Beijing, Spring-Verlag, Berlin. (1985).Google Scholar
  4. 4.
    Zhao-you Tang. A new concept of the natural history of AFP positive hepatocellular carcinoma, in “Subclinical Hepatocellular Carcinoma,” Z.Y. Tang ed., pp. 171–177. China Academic Publishers, Beijing, Spring-Verlag, Berlin. (1985).Google Scholar
  5. 5.
    R.O. Brady, C. Borek, and R.M. Bradley. Composition and synthesis of in rat hepatocyte and hepatoma cell lines. J. Biol. Chem. 244:6552–6554, (1969).PubMedGoogle Scholar
  6. 6.
    S. Hakomori. Change of glycolipid pattern in Morris hepatoma 5123 and 7800. Cancer Research, 30:2930–2936, (1970).PubMedGoogle Scholar
  7. 7.
    E.V. Dyatlovitskaya. Gangliosides of rat liver and hepatoma 27. Biochimya (Russ), 39: 552–556, (1974).Google Scholar
  8. 8.
    A.M. Dnistiran, V.P. Skipski, M. Barclay, and C.C. Stock. Alterations in glycosphingolipids of plasma membranes from Morris hepatoma 5132TC. Cancer Res., 37:2182–2187, (1977).Google Scholar
  9. 9.
    E.V. Dyalovitskaya, A.M. Novikov, N.P. Gorkova, and L.D. Bergelson. Gangliosides of hepatoma 27, normal and regenerating rat liver. Eur. J. Biochem., 67:357–364, (1976).CrossRefGoogle Scholar
  10. 10.
    R.P. Van Hoeven and P. Emmelot. Plasma membrane lipids of normal and neoplastic tissues, in “Tumor lipids: Biochemistry and Metabolism”, pp. 126–138. E. Wood ed., Amer. Oil Chemist’s Soc. Press: Illinois, (1973).Google Scholar
  11. 11.
    W.D. Merritt, C.L. Richardson, T.W. Keenan, and D.J. Morre. Gangliosides of liver tumors induced by N-2- fluorenylacetamide I. Ganglioside alterations in liver tumorigenesis and normal development. J. Nat’l. Cancer Inst., 60: 1313–1327, (1978).Google Scholar
  12. 12.
    W.D. Merritt, C.L. Richardson, T.W. Keenan, and D.J. Morre. Ganglioside of liver tumors induced by N-2- fluorenylacetamide II. Alterations in biosynthetic enzymes. J. Nat’l. Cancer Inst., 60: 1329–1337, (1978)Google Scholar
  13. 13.
    D.J. Morre, T.M. Kloppel, W.D. Merritt, and T.W. Keenan. Glycolipids as indicators of tumorigenesis. J. Supramol. Struct., 9:157–177, (1978).PubMedCrossRefGoogle Scholar
  14. 14.
    J. Kawanami. Lipids of cancer tissue III. Glycolipids of human hepatoma tissue. Jap. J. Exp. Med., 38:11–18, (1968).PubMedGoogle Scholar
  15. 15.
    Tanno Munehiko, et al. Copmparison of gangiosides pattern in cirrhotic liver and liver cell cancer. Liver, (Japan) 23:684, (1982).Google Scholar
  16. 16.
    Neng-hua Gho and Tian-Jue Gu. Ganglioside pattern in hepatoma. Acta. Acad. Med. Primae, Shangai, 12: 149–151, (1985).Google Scholar
  17. 17.
    Zheng-mei Zhu, De-sheng Zhang, Ji-ding Yuan, and Tian-jue Gu. The distribution pattern of ganglioside in normal, embryonic, and cancerous human liver. Acta. Acad. Med. Primae., Shangai, 18:234–236, (1983).Google Scholar
  18. 18.
    V.P. Walter, T.M. Kloppel, I.G. Deimling, and D.J. Morre. Alterations in neutral glycosphingolipids from transplantable hepatomas and in sera of rats bearing transplantable hepatomas. Cancer Biochem. Biophys., 4: 145–151, (1980).Google Scholar
  19. 19.
    T. Momoi, S. Ando, and Y. Magai. High resolution preparative column chromatographic system for ganglioside DEAE-Sephadex and a new porous silica, Iatrobeads. Biochim. Biophys. Acta, 441:448–497, (1976).Google Scholar
  20. 20.
    R.W. Ledeen and R.K. Yu. Gangliosides: structure, isolation, and analysis, in “Methods on Enzymology” V. Ginsberg ed., 83:139–191, (1982).Google Scholar
  21. 21.
    S. Hakomori. Tumor associated glycolipid antigens defined by monoclonal antibodies. Bull. Cancer, 70:118–126, (1983).PubMedGoogle Scholar
  22. 22.
    Neng-hua Guo and Tian-Jue Gu. Ganglioside pattern in hepatocellular hepatoma. Acta Biochim. Biophys. Sinica, 17:538–543, (1985).Google Scholar
  23. 23.
    Xia-juan Xia, Zhao-chun Cui, and Tian-Jue Gu. Isolation and purification of the hepatoma associated ganglioside. Chinese Biochem J. 1(2):13–17, (1985).Google Scholar
  24. 24.
    Xia-juan Xia, Zhao-chun Cui, and Tian-Jue Gu. Composition and carbohydrate sequence analysis of the hepatoma associated ganglioside. Acta Biochim. Biophys. Sinica, 17:615–623, (1985).Google Scholar
  25. 25.
    Xia-juan Xia, De-sheng Zhang, Zhao-chun Cui, Lan-nian Zhang, and Tian-Jue Gu. Permethylation analysis of hepatoma associated ganglioside. Acta Biochim. Biophys. Sinica, 17:635–642, (1985).Google Scholar
  26. 26.
    M. Inbar and L. Sachs. Interaction of the carbohydrate- binding protein Concanavalin A with normal and transformed cells. Proc. Nat’1. Acad. Sci. USA, 63:1418–1425, (1969).CrossRefGoogle Scholar
  27. 27.
    L.D. Berman. Lack of correlation between growth characteristics, agglutinability by plant lectins and the malignant phenotype. Int. J. Cancer, 15: 973–979, (1975).PubMedCrossRefGoogle Scholar
  28. 28.
    Zheng-Mei Zhu and Tian-Jue Gu. The agglutinative effect of Con A and PHA on normal, embryonic, and tumor cells. Chinese J. Cell Biol., 4(l):35–37, (1982).Google Scholar
  29. 29.
    Zheng-Mei Zhu and Tian-Jue Gu. The function of cell membrane in cell agglutination. Chinese J. Cell Biol. 4(2):16–19. (1982).Google Scholar
  30. 30.
    Zheng-Mei Zhu and Tian-Jue Gu. Con A receptors on normal liver and hepatoma cells. Chinese J. Cell Biol. 4(3): 21–24, (1982).Google Scholar
  31. 31.
    Zheng-Mei Zhu and Tian-Jue Gu. Agglutinin and cell agglutination IV characterization of Concanavalin A receptors on hepatoma cells. Acta Biochim. Biophys. Sinica, 14:295–301, (1982).Google Scholar
  32. 32.
    Xie-lin Ren, Jun-Cai Lin, and Tian-jue Gu. Comparison of soybean agglutinin receptors on hepatoma and normal mouse liver cells. Tumor, 2(5):4–6, (1982).Google Scholar
  33. 33.
    J.U. Baenziger and Y. Maynard. Human hepatic lectin purification. J. Biol. Chem., 225: 4 607–4613, (1980).Google Scholar
  34. 34.
    A G. Morell, G. Gregoriadis, and I.H. Scheinberg. The role of sialic acid in determining the survival of glycoproteins in the circulation. J. Biol. Chem., 246:1461–1467, (1971).PubMedGoogle Scholar
  35. 35.
    G. Uhlenbruck, J. Beuth, and V. Weidtman. Liver lectins: mediators for metastases? Experentia, 39: 1314–1315, (1983).CrossRefGoogle Scholar
  36. 36.
    S.H. Berondes. Lectins: their multiple endogenous cellular functions. Ann. Rev. Biochem., 50: 207–231, (1981).CrossRefGoogle Scholar
  37. 37.
    Hui-ren Zhou, Zheng-Mei Zhu and Tian-Jue Gu. B- galactoside specific lectins in normal anmd cancer bearing rat liver cells. Acta Acad. Med. Primae, Shangai, 11:361–364, (1984).Google Scholar
  38. 38.
    J.H. Jandel and J.H. Katz. The plasma-to-cell cyle of transferrin. J. Chin. Invest. 42:314–326, (1963).CrossRefGoogle Scholar
  39. 39.
    I.S. Trowbridge, R. A. Newman, and D.L. Domingo. Transferrin Receptors: structure and function. Biochem. Pharmcol., 33:925–932, (1984).CrossRefGoogle Scholar
  40. 40.
    W.P. Faulk and G.M.P. Galbraith. Trophoblast transferrin and transferrin receptor in the host parasite relationship of human pregnancy. Proc. Royal Soc. Lond. (Biol), 204:83–97, (1979).CrossRefGoogle Scholar
  41. 41.
    G.M. Galbraith, R.H. Galbraith, and W.P. Faulk. Transferrin binding by human lymphoblastoid cell lines and other transformed cells. Cell Immun., 49:215–222, (1980).CrossRefGoogle Scholar
  42. 42.
    R. Sutherland, D. Delia, C. Schneider, R. Newman, J. Kemshead, and M. Greaves. Ubiquitous cell surface glycoproteins on tumor cells is proliferation associated receptor for transferrin. Proc. Nat’1. Acad. Sci. USA, 78 4515–4519, (1981).CrossRefGoogle Scholar
  43. 43.
    D. Delia, M.F. Greaves, R. Newman. Modulation of Tleukemic cell phenotype with phorbol ester. Int. J. Cancer, Int. J. Cancer, 29; 23–31, (1982).Google Scholar
  44. 44.
    P. Reichard. From deoxynucleotides to DNA synthesis. Federation Proc., 37:9–14, (1978).Google Scholar
  45. 45.
    L. Vodinelich, R Sutherland, C. Schneider, R. Newman, and M. Greaves. Receptor for transferrin may be a target structure for natural killer cells. Proc. Natl. Acad Sci. USA, 80:835–839, (1983).PubMedCrossRefGoogle Scholar
  46. 46.
    R. J. Stockert, A. G. Morell and I.H. Scheinberg. Hepatic binding protein: The protective role of its sialic acid residues. Science 197:66–68, (1977).CrossRefGoogle Scholar
  47. 47.
    Hui-ren Zhou, Jin-yu Ma, and Tian-Jue Gu. Detection of transferrin receptor on cancer cell mebrane and the preparation of transferrin receptor and its antibody. Acta. Acad Med. Primae Shangii 11:165, (1984).Google Scholar
  48. 48.
    Hui-ren Zhou, Jian-nan Yeh, and Tian-Jue Gu. The uptake of 125I-transferrin in N-nitrosurea induced rat mammary tumor. In press.Google Scholar
  49. 49.
    Yu-ding Kuo, Z.Y. Tang, Z.Y. Lin, Z.S. Ma, K.G. Cheng, and W.Y. Yhao. Observation of radioimmunodetection of 131I-anti AFP in nude mice bearing human hepatocellular carcinoma. Tumor, 51:4–6, (1985).Google Scholar
  50. 50.
    D. Yu and Z.Y. Tang. Radioscanning of hepatocellular cancer using 131I-anti-acid ferrin antibody. Thesis for M.S. degree, (1984).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Tian-Jue Gu
    • 1
  1. 1.Department of BiochemistryShangai First Medical CollegeShangaiPeoples’s Republic of China

Personalised recommendations