Glycoconjugates and Tumor Metastasis

  • Tatsuro Irimura
  • Motowo Nakajima
  • Takao Yamori
  • David M. Ota
  • Karen F. Cleary
  • Garth L. Nicolson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 228)


Metastasis is one of the most dangerous characteristics of malignant tumors, and it seems to be a biological property separate from rapid and uncontrolled growth. The clinical significance of metastasis as opposed to tumor growth was suggested when we studied the records of 391 colorectal cancer patients surgically treated at The University of Texas M. D. Anderson Hospital and Tumor Institute between 1959 and 1975 to see if there was any correlation between the size of a primary tumor and the incidence of local or distant metastasis. The mean size of primary tumors from patients having regional or distant metastasis was significantly smaller than the mean size of primary tumors from patients without metastasis (Miller et al., 1985), and the five-year survival rate of patients having metastasis at the time of surgery was much poorer than that of patients having no metastasis (Miller et al., 1985). These results indicated that metastatic capacity, not rapid proliferation, is the major cause of death by colorectal cancer. This hypothesis is presumably true for many other malignant tumors. The other important conclusion drawn from this study was that the tumor cells of each colorectal carcinoma may be unique in their metastatic potential. In addition, intratumoral heterogeneity may exist. These findings are consistent with the biological nature of metastatic tumors as determined in experimental tumor systems (Nicolson and Poste, 1982, 1983).


Melanoma Cell Sialic Acid Heparan Sulfate Wheat Germ Agglutinin Metastatic Tumor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altevogt, P., Fogel, M., Cheingsong-Popov, R., Dennis, J., Robinson, P. and Schirrmacher, V. (1983). Related high and low metastatic tumor lines show different patterns of lectin binding and cell surface sialylation. Cancer Res., 43:5138–5144.PubMedGoogle Scholar
  2. Angello, J. C., Danielson, K. G., Anderson, L. W. and Hosick, H. L. (1982a). Glycosaminoglycan synthesis by subpopulations of epithelial cells from a mammary adenocarcinoma. Cancer Res., 42:2207–2210.PubMedGoogle Scholar
  3. Angello, J. C., Hosick, H. L. and Anderson, L. W. (1982b). Glycosaminoglycan synthesis by a cell line (Cl-Sl) established from a preneoplastic mouse mammary outgrowth. Cancer Res., 42:4975–4978.PubMedGoogle Scholar
  4. Astler, V. B. and Coller, F. A. (1985). The prognostic significance of direct extension of carcinoma of the colon arid rectum. Ann. Surg., 139:846–851.CrossRefGoogle Scholar
  5. Avnur, Z. and Geiger, B. (1984). Immunochemical localization of native chondroitin-sulfate in tissues and cultured cells using specific monoclonal antibody. Cell, 38:811–822.PubMedCrossRefGoogle Scholar
  6. Bossman, H. B., Bieber, G. F., Brown, A. E., Case, K. R., Gevsten, D. M., Kimmerer, T. W. and Leone, A. (1973). Biochemical parameters correlated with tumor cell implantation. Nature, 246:487–489.CrossRefGoogle Scholar
  7. Brunson, K. W. and Nicolson, G. L. (1978). Selection and biologic properties of malignant variants of murine lymphosarcoma. J. Natl. Cancer Isnt., 61:1499–1503.Google Scholar
  8. Brunson, K. W. and Nicolson, G. L. (1979). Selection of malignant melanoma variant cell lines for ovary colonization. J. Supramol. Struct., 11:517–528.PubMedCrossRefGoogle Scholar
  9. Brunson, K. W., Beatti, G. and Nicolson, G. L. (1978). Selection and altered properties of brain-colonizing metastatic melanoma. Nature, 272:543–545.PubMedCrossRefGoogle Scholar
  10. Chan, S.-Y. and Pollard, M. (1980). Metastasis enhancing effect of heparin and its relationship to a lipoprotein factor. J. Natl. Cancer Inst., 64:1121–1125.PubMedGoogle Scholar
  11. Chan, W. S., Jackson, A. and Turner, G. A. (1984). Differences in surface expression of WGA-binding protein of cells from a lymphosarcoma and its liver metastases. Br. J. Cancer, 89:181–191.CrossRefGoogle Scholar
  12. Codington, J. F., Klein, G., Cooper, A. G., Lee, N., Brown, M. C. and Jeanloz, R. W. (1978). Further studies on the relationship between large glycoprotein molecules and allotransplantability in the TA3 tumor of the mouse: Studies on segregating TA3-HA hybrid. J. Natl. Cancer Inst., 60:811–818.PubMedGoogle Scholar
  13. Cohen, R., Cassiman, J. and Bermfield, M. (1976). Relationship of transformation, cell density, and growth control to the cellular distribution of newly synthesized glycosaminoglycans. J. Cell Biol., 71:280–294.CrossRefGoogle Scholar
  14. Dennis, J., Waller, C., Timple, R. and Schirrmacher, V. (1982). Surface sialic acid residues attachment of metastatic tumor cells to collagen type IV and fibronectin. Nature, 300:274–476.PubMedCrossRefGoogle Scholar
  15. Dennis, J. W., Carver, J. P. and Schachter, M. (1984). Asparagine-linked oligosaccharides in murine tumor cells: Comparison of a WGA-resistant (WGAr) nonmetastatic mutant and a related WGA-sensitive (WGAS) metastatic line. J. Cell Biol., 99:1034–1044.PubMedCrossRefGoogle Scholar
  16. Dobrossy, L., Pavelic, Z. P. and Bernacki, R. J. (1981). A correlation between cell surface sialyltransferase, sialic acid, and glycosidase activities and implantability of B16 murine melanoma. Cancer Res., 41:2262–2266.PubMedGoogle Scholar
  17. Felipe, M. I. (1969). Value of histochemical reactions for mucosubstances in the diagnosis of certain pathological conditions of the colon and rectum. Gut, 10:577–586.CrossRefGoogle Scholar
  18. Fidler, I. J. (1973). Selection of successive tumor line for metastasis. Nature New Biol., 242:148–149.PubMedGoogle Scholar
  19. Fidler, I. J. and Kripke, M. L. (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science, 197:998–1003.CrossRefGoogle Scholar
  20. Fidler, I. J., Gersten, D. M. and Hart, I. R. (1978). The biology of cancer invasion and metastasis. Adv. Cancer Res., 28:199–250.Google Scholar
  21. Finne, J., Tao, T.-W. and Burger, M. D. (1980). Carbohydrate changes in glycoproteins of a poorly metastasizing wheat germ agglutinin-resistant melanoma clone. Cancer Res., 40:2580–2587.PubMedGoogle Scholar
  22. Hagmar, B. and Boeryd, B. (1969). Disseminating effect of heparin on experimental tumor metastasis. Pathol. Eur., 4:274–282.PubMedGoogle Scholar
  23. Hagmar, B. and Norby, K. (1970). Evidence for effects of heparin cell surface influencing experimental metastasis. Int. J. Cancer 5:72–84.PubMedCrossRefGoogle Scholar
  24. Hilgard, P. (1984). Anticoagulant and tumor growth: Pharmacological considerations. In “Cancer Invasion and Metastasis: Biologic and Therapeutic Aspects (Nicolson, G.L. and Milas, L., eds.), Raven Press, NY, pp 353–360.Google Scholar
  25. Iozzo, R. V. (1985). Neoplastic modulation of extracellular matrix: Colon carcinoma cells release polypeptides that alter proteoglycan metabolism in colon fibroblasts. J. Biol. Chem., 260:7464–7473.PubMedGoogle Scholar
  26. Iozzo, R. V. and Wight, T. N. (1982). Isolation and characterization of proteoglycan synthesized by human colon and colon carcinoma. J. Biol. Chem., 257:11135–11194.PubMedGoogle Scholar
  27. Iozzo, R. V., Bolender, R. P. and Wight, T. N. (1982). Proteoglycan changes in the intercellular matrix of human colon carcinoma. An integrated biochemical and stereologic analysis. Lab. Invest. 47:124–138.PubMedGoogle Scholar
  28. Irimura, T. and Nicolson, G. L. (1981a). The role of glycoconjugates in metastatic melanoma blood-borne arrest and cell surface properties. J. Supramol. Struct. Cell., Biochem., 14:325–336.CrossRefGoogle Scholar
  29. Irimura, T. and Nicolson, G. L. (1981b). Affinity isolation of cell surface sialoglycoproteins from B16 melanoma and their interaction with endothelial cell basal lamina. J. Cell. Biol., 91:118a.Google Scholar
  30. Irimura, T. and Nicolson, G. L. (1983a). Carbohydrate chain analysis using lectin binding to mixtures of glycoproteins separated by polyacrylamide slab gel electrophoresis with in situ chemical modifications. Carbohydr. Res., 115:209–220.CrossRefGoogle Scholar
  31. Irimura, T. and Nicolson, G. L. (1983b). The interaction of pokeweed mitogen with poly(N-acetyllactosamine)-type carbohydrate chains. Carbohydr. Res., 120:187–195.PubMedCrossRefGoogle Scholar
  32. Irimura, T. and Nicolson, G. L. (1984a). Carbohydrate chain analysis by lectin binding to electrophoretically separated glycoproteins from murine B16 melanoma sublines of various metastatic properties. Cancer Res., 44:791–798.PubMedGoogle Scholar
  33. Irimura, T. and Nicolson, G. L. (1984b). Use of pokeweed mitogen for the study of the occurrence of poly(N-acetyllactosamine)-type carbohydrate chain in metastatic tumor cells. Fed. Proc., 43:1695.Google Scholar
  34. Irimura, T., Kawaguchi, T., Terao, T. and Osawa, T. (1975). Carbohydrate binding specificity of so-called galactose-specific phytohemagglutinins. Carbohydr. Res., 39:317–327.PubMedCrossRefGoogle Scholar
  35. Irimura, T., Gonzalez, R. and Nicolson, G. L. (1981). Effects of tunicamycin on B16 metastatic melanoma cell surface glycoproteins and blood-borne arrest and survival properties. Cancer Res., 41:3411–3418.PubMedGoogle Scholar
  36. Irimura, T., Nakajima, M., Derrante, N. and Nicolson, G. L. (1983). High-speed gel permeation chromatography of glycosaminoglycans: Its application to the analysis of heparan sulfate of embryonic carcinoma and its degradation products by tumor cell derived heparanase. Anal. Biochem., 130:461–468.PubMedCrossRefGoogle Scholar
  37. Irimura, T., Nakajima, M. and Nicolson, G. L. (1986). Chemically modified heparins as inhibitors of heparan sulfate specific endo-β-glucuronidase (heparanase) of metastatic melanoma cells. Biochemistry, (in press).Google Scholar
  38. Irimura, T., Tressler, R. J. and Nicolson, G. L. (1985a). Cell surface glycoproteins associated with liver colonization of metastatic variants of RAW117 large cell lymphoma. J. Cell Biol., 101:4802a.Google Scholar
  39. Irimura, T., Tressler, R. J. and Nicolson, G. L. (1985b). Sialoglycoproteins of murine RAW117 large cell lymphoma/lymphosarcoma sublines of various metastatic colonization properties. Exp. Cell Res., (in press).Google Scholar
  40. Kimata, K., Homma, Y., Okayama, M., Oguri, K., Hozumi, M. and Suzuki, S. (1983). Increased synthesis of hyaluronic acid by mouse mammary carcinoma cell variants with high metastatic potential. Cancer Res., 43:1347–1354.PubMedGoogle Scholar
  41. Kornfeld, K., Reitman, M. L. and Kornfeld, R. (1981). The carbohydrate binding specificity of pea and lentil lectins: Fucose is an important determinant. J. Biol. Chem., 256:6633–6640.PubMedGoogle Scholar
  42. Kozlowski, J. M., Fidler, I. J., Campbell, D., Xu, Z., Kaighn, M. E. and Hart, J. R. (1984a). Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res., 44:3522–3529.PubMedGoogle Scholar
  43. Kozlowski, J. M., Hart, I. R., Fidler, I. J. and Hanna, N. (1984b). A human melanoma line heterogeneous with respect to metastatic capacity in athymic nude mice. 3. Natl. Cancer Inst., 72:913–917.Google Scholar
  44. Kramer, R. H., Vogel, K. and Nicolson, G. L. (1982). Solubilization and degradation of subendothelial matrix glycoproteins and proteoglycans by metastatic tumor cells. J. Biol. Chem., 257:2678–2686.PubMedGoogle Scholar
  45. LeGrue, S. J. (1982). 1-Butanol extraction and subsequent reconstitution of membrane components which mediate metastatic phenotype. Cancer Res., 42:2126–2134.PubMedGoogle Scholar
  46. Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I. R., Fortz, C. M. and Shafie, S. (1980). Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature, 284:67–68.PubMedCrossRefGoogle Scholar
  47. Liotta, L. A., Rao, N. C., Terranova, V. P., Barsky, S. and Thorgeirsson, U. (1984). Tumor cell attachment and degradation of basement membranes. In “Cancer Invasion and Metastasis: Biologic and Therapeutic Aspects” (Nicolson, G. L. and Milas, L., eds.). Raven Press, N.Y., pp. 169–176.Google Scholar
  48. Maat, B. (1978). Extrapulmonary colony formation after intravenous injection of tumor cells into heparin-treated animals. Br. J. Cancer, 37:369–376.PubMedCrossRefGoogle Scholar
  49. Maniglia, C. A., Gomez, J. J., Luikart, S. D. and Sartorelli, A. C. (1985). Glycosaminoglycan production and distribution in cloned B16 murine melanoma cell lines exhibiting different lung colony-forming efficiencies. J. Natl. Cancer Inst., 75:111–120.PubMedGoogle Scholar
  50. Miller, W., Ota, D., Giacco, G., Guinee, V., Irimura, T., Nicolson, G. L. and Cleary, K. (1985). Absence of a relationship of size of primary colon carcinoma with metastasis and survival. Clin. Expl. Metastasis, 3:189–196.CrossRefGoogle Scholar
  51. Miner, K. M. and Nicolson, G. L. (1983). Differences in the sensitivities of murine metastatic lymphoma/lymphosarcoma variants to macrophage-mediated cytolysis and/or cytostasis. Cancer Res., 43:2063–2067.PubMedGoogle Scholar
  52. Miner, K. M., Walter, H. and Nicolson, G. L. (1981). Subfractionation of malignant variants of metastatic murine lymphosarcoma cells by countercurrent distribution in two-polymer aqueous phases. Biochemistry, 20:6244–6250.PubMedCrossRefGoogle Scholar
  53. Miner, K. M., Kawaguchi, T., Uba, G. W. and Nicolson, G. L. (1982). Clonal drift of cell surface, melanogenic, and experimental metastatic properties of in vivo-selected brain meninges-colonizing B16 melanoma. Cancer Res., 42:4631–4638.PubMedGoogle Scholar
  54. Nakajima, M., Irimura, T., Di Ferrante, D., Di Ferrante, N. and Nicolson, G. L. (1983). Heparan sulfate degradation: Relation to tumor invasive and metastatic properties of mouse B16 melanoma sublines. Science, 220:611–613.PubMedCrossRefGoogle Scholar
  55. Nakajima, M., Irimura, T., Di Ferrante, N. and Nicolson, G. L. (1984). Metastatic melanoma cell heparanase. Characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase. J. Biol. Chem., 259:2283–2290.PubMedGoogle Scholar
  56. Nicolson, G. L. (1982). Metastatic tumor cell attachment and invasion assay utilizing vascular endothelial cell monolayers. J. Histochem. Cytochem., 30:214–220.PubMedCrossRefGoogle Scholar
  57. Nicolson, G. L. (1984). Cell surface molecules and tumor metastasis. Regulation of metastatic diversity. Exp. Cell Res., 150:3–22.PubMedCrossRefGoogle Scholar
  58. Nicolson, G. L. and Irimura, T. (1984). Estimating glycoprotein carbohydrate chain structures by lectin reactivities in polyacrylamide gels. Biol. Cell, 51:157–164.PubMedGoogle Scholar
  59. Nicolson, G. L. and Poste, G. (1982). Tumor cell diversity and host response in cancer metastasis. Part 1: Properties of metastatic cells. Curr. Probl. Cancer, 7(6):l-83.CrossRefGoogle Scholar
  60. Nicolson, G. L. and Poste, G. (1983). Tumor cell diversity and host responses in cancer metastasis. Part 2: Host immune responses and therapy of metastasis. Curr. Probl. Cancer, 7(7):l-42.CrossRefGoogle Scholar
  61. Nicolson, G. L., Mascali, J. J. and Muire, E. J. (1982). Metastatic RAW117 lymphosarcoma as a model for malignant-normal cell interactions: Possible roles for cell surface antigens in determining the quantity and location of secondary tumors. Oncodev. Biol. Med., 4:149–159.PubMedGoogle Scholar
  62. Nicolson, G. L., Van Pelt, C., Irimura, T. and Kawaguchi, T. (1985). Stabilities and characteristics of brain meinges-colonizing murine melanoma cells. Prog. Exp. Tumor Res. 29:17–35.PubMedGoogle Scholar
  63. Ninomiya, Y., Hata, R. and Nagai, Y. (1980). Glycosaminoglycan synthesis by liver parenchymal cell clones in culture and its change with transformation. Biochim. Biophys. Acta, 629:349–358.PubMedGoogle Scholar
  64. Ogren, S. and Lindahl, U. (1975). Cleavage of macromolecular heparin by an enzyme from mouse mastocytoma. J. Biol. Chem., 250:2690–2697.PubMedGoogle Scholar
  65. Oldberg, A., Heldin, C.-H., Westson A, Busch, C. and Hoole, M. (1980). Characterization of a platelet endoglycosidase degrading heparin-like polysaccharides. Biochemistry, 19:5755–5762.PubMedCrossRefGoogle Scholar
  66. Oosta, G. M., Faureau, L. V., Beefer, D. L. and Rosenberg, R. D. (1982). Purification and properties of human platelet heparitinase. J. Biol. Chem., 257:11249–11255.PubMedGoogle Scholar
  67. Pearlstein, E., Salk, P. L., Yogeeswaran, G. (1980). Correlation between spontaneous metastatic potential, platelet aggregating activity of cell surface extracts and cell surface sialylation in 10 metastatic variant derivatives of rat renal sarcoma cell line. Proc. Natl. Acad. Sci., U.S.A., 77:4336–4339.PubMedCrossRefGoogle Scholar
  68. Poste, G. and Nicolson, G. L. (1980). Blood-borne tumor cell arrest and metastasis modified by fusion of plasma membrane vesicles from highly metastatic cells. Proc. Natl. Acad. Sci. U.S.A., 77:399–403.PubMedCrossRefGoogle Scholar
  69. Raschke, W. D., Ralph, P., Watson, J., Sklar, M. and Coon, H. (1975). Oncogenic transformation of murine lymphoid cells by in vitro infection with Abelson leukemia virus. J. Natl. Cancer Inst., 54:1249–1253.PubMedGoogle Scholar
  70. Raz, A., Bucana, C., Mellan, W. and Fidler, I. J. (1980a). Distribution of membrane anionic sites on B16 melanoma variants with differing lung colonization potential. Nature, 284:363–364.PubMedCrossRefGoogle Scholar
  71. Raz, A., Mellan, W. L., Hart, I. R., Bucana, C. D., Hoyer, L. C., Sela, B-A., Dragsten, P. and Fidler, I. J. (1980b). Cell surface properties of B16 melanoma variants with differing metastatic potential. Cancer Res., 40:1645–1651.PubMedGoogle Scholar
  72. Reading, C. L., Belloni, P. N., and Nicolson, G. L. (1980a). Selection and in vivo properties of lectin attachment variants of malignant murine lymphosarcoma cell lines. J. Natl. Cancer Inst., 64:1241–1249.PubMedGoogle Scholar
  73. Reading, C. L., Brunson, K. W., Torriani, M. and Nicolson, G. L. (1980b). Malignancies of metastatic murine lymphosarcoma cell lines and clones correlate with decreased cell surface display of RNA tumor virus envelope glycoprotein gp70. Proc. Natl. Acad. Sci. U.S.A., 77:5943–5947.PubMedCrossRefGoogle Scholar
  74. Reading, C. L., Kramer, P. M., Miner, K. M. and Nicolson, G. L. (1983). In vivo and in vitro properties of malignant variants of RAW117 metastatic murine lymphoma/lymphosarcoma. Clin. Exp. Metastasis, 1:135–151.PubMedCrossRefGoogle Scholar
  75. Reiber, M. and Reiber, M.S. (1981). Metastatic potential correlates with cell surface protein alterations in B16 melanoma variants. Nature, 293:74–76.CrossRefGoogle Scholar
  76. Savion, N., Vlodavsky, I. and Fuks, Z. (1985). Interaction of T-lymphocytes and macrophages with cultured vascular endothelial cells: Attachment, invasion, and subsequent degradation of the subendothelial extracellular matrix. J. Cell. Physiol., 118:169–178.CrossRefGoogle Scholar
  77. Schirrmacher, V., Cheingsong-Popov., R. and Arnheiter, H. (1980). Hepatocyte-tumor cell interaction in vitro. I. Conditions for rossette formation and inhibition by anti H-2 antibody. J. Exp. Med. 151:984–989.PubMedCrossRefGoogle Scholar
  78. Schirrmacher, V., Altevogt, P., Fogel, M., Dennis, J., Waller, C. A., Barz, D., Schwaltz, R., Cheingsong-Popov, R., Springer, G. F., Robinson, P.J., Nebe, T., Brossmer, W., Vlodavsky, I., Poweletz, N., Zimmerman, H.-P. and Uhlenbruck, G. (1982). Importance of cell surface carbohydrates in cancer cell adhesion, invasion and metastasis. Does sialic acid direct metastatic behavior? Invasion Metastasis, 2:313–360.Google Scholar
  79. Sheppard, J. R., Kerr, S. T., Brown, D. R. and Burger, M. M. (1983). Lectin resistant B16 melanoma cell exhibits an altered response to MSH and cholera toxin. Exp. Cell Res. 149:577–581.PubMedCrossRefGoogle Scholar
  80. Sheppard, J. R., Koestlev, T. P., Corwin, S. P., Buscarino, C., Doll, J., Lester, B., Greig, R. G. and Poste, G. (1984). Experimental metastasis correlates with cyclic AMP accumulation in B16 melanoma clones. Nature, 308:544–507.PubMedCrossRefGoogle Scholar
  81. Sloane, B. F., Dunn J. R. and Honn, K. V. (1981). Lysosomal cathepsin B: Correlation with metastatic potential. Science, 212:1151–1153.PubMedCrossRefGoogle Scholar
  82. Steck, P. A. and Nicolson, G. L. (1983). Cell surface glycoproteins of 13762NF mammary adenocarcinoma clones of differing metastatic potentials. Exp. Cell Res., 147:255–267.PubMedCrossRefGoogle Scholar
  83. Stringfellow, D. A. and Fitzpatrick, F. A. (1979). Prostaglandin D2 controls pulmonary metastasis of malignant melanoma cells. Nature, 282:76–78.PubMedCrossRefGoogle Scholar
  84. Terranova, V. P., Liotta, L. A., Russo, R. and Martin, G. R. (1982). Role of laminin in the attachment and metastasis of tumor cells. Cancer Res., 42:2265–2269.PubMedGoogle Scholar
  85. Tsubura, E., Yamashita, T., Kobayashi, M., Higuchi, Y. and Isobe, J. (1977). Inhibitory mechanism of blood-borne pulmonary metastasis by sulfated polysaccharides. Gann Monogr. Cancer Res., 20:147–161.Google Scholar
  86. Wang, B. S., McLoughlin, G. A., Richie, J. P. and Mannick, J. A. (1980). Correlation of the production of plasminogen activator with tumor metastasis in B16 melanoma cell lines. Cancer Res., 41:4629–4636.Google Scholar
  87. Wang, Z-W., Irimura, T., Nakajima, M., Belloni, P.N. and Nicolson, G. L. (1985). Characterization of the extracellular matrix-associated glycosaminoglycans produced by untransformed and transformed bovine corneal endothelial cells in culture. Eur. J. Biochem. (in press).Google Scholar
  88. Yogeeswaran, G. and Salk, P.L. (1981). Metastatic potential is positively correlated with cell surface sialylation of cultured murine and tumor cell lines. Science, 212:1514–1516.PubMedCrossRefGoogle Scholar
  89. Yogeeswaran, G., Stein, B.S. and Sebastian, H. (1978). Altered cell surface organization of ganglisides and sialoglycoproteins of mouse metastatic melanoma variant lines selected in vivo for enhanced lung implantation. Cancer Res., 38:1336–1344.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Tatsuro Irimura
    • 1
  • Motowo Nakajima
    • 1
  • Takao Yamori
    • 1
  • David M. Ota
    • 2
  • Karen F. Cleary
    • 3
  • Garth L. Nicolson
    • 1
  1. 1.Departments of Tumor BiologyThe University of Texas M.D. Anderson Hospital and Tumor InstituteHoustonUSA
  2. 2.Departments of SurgeryThe University of Texas M.D. Anderson Hospital and Tumor InstituteHoustonUSA
  3. 3.Departments of PathologyThe University of Texas M.D. Anderson Hospital and Tumor InstituteHoustonUSA

Personalised recommendations