Sialic Acids as Antigenic Determinants of Complex Carbohydrates

  • Roland Schauer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 228)


Carbohydrates have been known for long as potent antigens, described in numerous publications and extensively being discussed in this book. It became evident in the last years that sialic acids play an important role in this field, too, although their exact function is not yet understood in every case (Reutter et al., 1982; Schauer, 1982; Schauer, 1983; Schauer, 1985). Scheme 1 gives a survey of the influence of carbohydrates in general and of sialic acids in special on immunological reactions. On the one hand carbohydrates act as antigens, e.g. as differentiation and onco-developmental antigens (Feizi, 1985), and on the other hand they can mask antigenic sites on proteins, lipids and carbohydrate oligo- and polymers and thus can represent “anti-antigens”. It should be mentioned already here that the latter role is often due to, or at least strengthened by, the presence of sialic acids in glycan chains. Such a masking effect of carbohydrate chains may be illustrated by Figs. 1 and 2, showing, from different views, branched, N-glycosidically linked oligosaccharide chains, which cover the protein parts of the glycoprotein molecules like clouds and in this way may mask antigenic sites of the protein part.


Sialic Acid Sialic Acid Residue Oligosaccharide Chain Galactose Residue Cold Agglutinin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anstee D.J. (1981) The Blood Group MNSs-Active Sialoglycopro-teins, Seminars Hematol. 18:13–31.Google Scholar
  2. Ashwell G. and Harford J. (1982) Carbohydrate-Specific Receptors of the Liver, Ann. Rev. Biochem. 51:531–554.PubMedCrossRefGoogle Scholar
  3. Blau E.B. and Haas J.E. (1973) Glomerular Sialic Acid and Proteinuria in Human Renal Disease, Lab. Invest. 28:477–481.PubMedGoogle Scholar
  4. Blix G. (1936) über die Kohlenhydratgruppen des Submaxilla-rismucins, Hoppe-Seyler’s Z. Physiol. Chem. 240:43–54.CrossRefGoogle Scholar
  5. Cheresh D.A., Varki A.P., Varki N.M., Stallcup W.B., Levine J. and Reisfeld R.A. (1984) A Monoclonal Antibody Recognizes an O-Acylated Sialic Acid in a Human Melanoma-as-sociated Ganglioside, J. Biol. Chem. 259:7453–7459.PubMedGoogle Scholar
  6. Corfield A.P. and Schauer R. (1982) Occurrence of Sialic Acids, in: Sialic Acids, Cell Biol. Monogr. Vol. 10, Schauer R, ed., Springer, Wien, pp. 5–50.Google Scholar
  7. Deicher H. (1926) über die Erzeugung heterospezifischer Hämagglutinine durch Infektion artfremden Serums, Z. Hyg. Infektionskr. 106:561–579.CrossRefGoogle Scholar
  8. Faillard H. and Cabezas J.A. (1963) Isolierung von N-Acetyl-und N-Glykolylneuraminsäure aus Kälber-und Hühnerserum, Hoppe-Seylers Z. Physiol. Chem. 333:266–271.PubMedCrossRefGoogle Scholar
  9. Faillard H. and Schauer R. (1972) Glycoproteins as Lubricants, Protective Agents, Carriers, Structural Proteins and as Participants in Other Functions, in: Glycoproteins -Their Composition, Structure and Function, BBA Library, Vol. 5, Gottschalk A., ed., Elsevier, Amsterdam, pp. 1246–1267.Google Scholar
  10. Feizi T. (1985) Demonstration by Monoclonal Antibodies that Carbohydrate Structures of Glycoproteins and Glycolipids are Onco-Developmental Antigens, Nature 314:53–57.PubMedCrossRefGoogle Scholar
  11. Finne J. (1982) Occurrence of Unique Polysialosyl Carbohydrate Units in Glycoproteins of Developing Brain, J. Biol. Chem. 257:11966–11970.PubMedGoogle Scholar
  12. Fischer K., and Poschmann A. (1976) Neuraminidase-Induced Hemolytic Anemia -Diagnostic and Therapeutic Guidelines, Dtsch. Med. Wochenschr. 101:1731–1733PubMedCrossRefGoogle Scholar
  13. Gahmberg C.G. and Andersson L.C. (1982) Surface Glycoproteins of Malignant Human Leukocytes, Biochim. Biophys. Acta 651:65–83.PubMedGoogle Scholar
  14. Hakomori S., Patterson C.M., Nudelman E. and Sekiguchi K. (1983) A Monoclonal Antibody Directed to N-acetylneur-aminosyl-a(2–6)-Galactosyl Residue in Gangliosides and Glycoproteins, J. Biol. Chem. 258:11819–11822.PubMedGoogle Scholar
  15. Hanganutziu M. (1924) Hemagglutinines Heterogenetiques apres Injection de Serum de Cheval, Compt. Rend. Soc. Biol. 91:1457–1459.Google Scholar
  16. Herrler G., Rott R., Klenk H.-D., Muller H.-P., Shukla A.K. and Schauer R. (1985) The Receptor-Destroying Enzyme of Influenza C Virus is Neuraminate-O-Acetylesterase, Embo J. 4:1503–1506.PubMedGoogle Scholar
  17. Higa H.H., Rogers G.N. and Paulson J.C. (1985) Influenza Virus Hemagglutinins Differentiate between Receptor Determinants Bearing N-Acetyl-, N-Glycollyl-, and N, O-Diacetylneuraminic Acids, Virology 144:279–282.PubMedCrossRefGoogle Scholar
  18. Higashi H., Fukui Y., Ueda S., Kato S., Hirabayashi Y., Matsumoto M. and Naiki, M. (1984) Sensitive Enzyme-Immu-nostaining and Densitometric Determination on Thin-Layer Chromatography of Nj-Glycolylneuraminic Acid-Containing Glycosphingolipids, Hanganutziu-Deicher Antigens, J. Biochem. 95:1517–1520.PubMedGoogle Scholar
  19. Higashi, H., Hirabayashi Y., Fukui Y., Naiki M., Matsumoto M., Ueda S. and Kato S. (1985) Characterization of N-Glycolylneuraminic Acid-containing Gangliosides as Tumor-associated Hanganutziu-Deichentigen in Human Colon Cancer, Cancer Res. 45:3796–3802.PubMedGoogle Scholar
  20. Howie A.J. and Brown G. (1985) Effect of Neuraminidase on the Expression of the 3-Fucosyl-N-Acetyllactosamine Antigen in Human Tissues, J. Clin. Pathol. 38:409–416.PubMedCrossRefGoogle Scholar
  21. Jennings H.J., Katzenellenbogen E., Lugowski C., Michon F., Roy R. and Kasper D.L. (1984) Structure, Conformation and Immunology of Sialic Acid-Containing Polysaccharides of Human Pathogenic Bacteria, Pure Appl. Chem. 56:893–905.CrossRefGoogle Scholar
  22. Kasukawa R., Kano K., Bloom M.L. and Milgrom F. (1976) Heterophile Antibodies in Pathologic Human Sera Resembling Antibodies Stimulated by Foreign Species Sera, Clin. Exp. Immunol. 25:122–132.PubMedGoogle Scholar
  23. Kelley L.K., King B.F., Johnson L.W. and Smith C.H. (1979) Protein Composition and Structure of Human Placental Microvillous Membrane, Exp. Cell Res. 123:167–176.PubMedCrossRefGoogle Scholar
  24. Kelm S., Jibril S., Lee H., Yoshino T. and Schauer R. (1986) The Galactose Receptor of Rat Peritoneal Macrophages: Binding of Sialidase-Treated Blood Cells and Glycoproteins, in: Lectins, Biology, Biochemistry, Clinical Biochemistry, Vol. 5, Bøg-Hansen T.C. and van Driessche E., eds., Walter de Gruyter, Berlin, pp. 221–228.Google Scholar
  25. Kolb H., Vogt D. and Kolb-Bachofen V. (1981) Does the D-Galactose Receptor on Kupffer Cells Recycle? Biochem. J. 200:445–448.PubMedGoogle Scholar
  26. Montreuil J. (1980) Primary Structure of Glycoprotein Glycans, Adv. Carbohydr. Chem. Biochem. 37:157–223.PubMedCrossRefGoogle Scholar
  27. Montreuil J., Debray H., Debeire P. and Delannoy P. (1983) Lectins as Oligosaccharide Receptors, in: Structural Carbohydrates in the Liver, Falk Symposium 34, Popper H., Reutter W., Köttgen E. and Gudat, F., eds., MTP Press Boston, pp. 239–258.Google Scholar
  28. Müller E., Schröder C., Sharon N. and Schauer R. (1983) Binding and Phagocytosis of Sialidase-Treated Rat Erythrocytes by a Mechanism Independent of Opsonins, Hoppe-Seyler’s Z. Physiol. Chem. 364:1410–1420.CrossRefGoogle Scholar
  29. Nishimaki T., Kano K. and Milgrom F. (1979) Hanganutziu-Dei-cher Antigen and Antibody in Pathologic Sera and Tissues, J. Immunol. 122:2314–2318.PubMedGoogle Scholar
  30. Nöhle U. and Schauer R. (1984) Metabolism of Sialic Acids from Exogeneously Administered Sialyllactose and Mucin in Mouse and Rat, Hoppe-Seyler’s Z. Physiol. Chem. 365:1457–1467.PubMedCrossRefGoogle Scholar
  31. Ørskov F., Orskov I., Sutton A., Schneerson R., Lin W, Egan W., Hoff G.E. and Robbings J.B. (1979) Form variation in E. coli K1: Determined by O-Acetylation of the Capsular Polysaccharide. J. Exp. Med. 149:669–685.PubMedCrossRefGoogle Scholar
  32. Picard J.K., Loveday D. and Feizi T. (1985) Evidence for Sialylated Type 1 Blood Group Chains on Human Erythrocyte Membranes Revealed by Agglutination of Neuramini-dase-Treated Erythrocytes with Waldenstrom’s Macroglo-bulin Iwoo and Hybridoma Antibody FC 10.2, Vox Sang. 48:26–33.PubMedCrossRefGoogle Scholar
  33. Rahmann H., Hilbig R., Probst W. and Mühleisen M. (1984) Brain Gangliosides and Thermal Adaptation in Vertebrates, in: Ganglioside Structure, Function and Biomedical Potential, Adv. Exp. Med. Biol., Vol. 174, Ledeen R.W., Yu R.K., Rapport M.M. and Suzuki K., eds., Plenum Press, New York, pp. 395–404.Google Scholar
  34. Reisner Y., Linker-Israeli M. and Sharon N. (1976) Separation of Mouse Thymocytes into Two Subpopulations by the Use of Peanut Agglutinin, Cell. Immunol. 25:129–134.PubMedCrossRefGoogle Scholar
  35. Reutter W., Köttgen E., Bauer C. and Gerok W. (1982) Biological Significance of Sialic Acids, in Sialic Acids, Cell Biol. Monogr., Vol. 10, Schauer R., ed., Springer, Wien, pp. 263–305.Google Scholar
  36. Roelcke D. (1984) Kälteagglutinine: Humane monoklonale Antikörper gegen Glykokonjugat-Antigene von Zelloberflächen, Funkt. Biol. Med. 3:106–127.Google Scholar
  37. Roelcke D. (1985) Li Cold Agglutinin: A Further Antibody Recognizing Sialic Acid-Dependent Antigens Fully Expressed on Newborn Erythrocytes, Vox Sang. 48:181–183.PubMedCrossRefGoogle Scholar
  38. Roelcke D., Pruzanski W., Ebert W., Römer W., Fischer E., Lenhard V. and Rauterberg E. (1980) A New Human Monoclonal Cold Agglutinin Sa Recognizing Terminal N-Acetyl-neuraminyl Groups on the Cell Surface, Blood 55:677–681.PubMedGoogle Scholar
  39. Roos P.H., Hartman H.-J., Schlepper-Schäfer J., Kolb H. and Kolb-Bachofen V. (1985) Galactose-Specific Receptors on Liver Cells. II. Characterization of the Purified Receptor from Macrophages Reveals no Structural Relationship to the Hepatocyte Receptor, Biochim. Biophys. Acta 847:115–121.PubMedCrossRefGoogle Scholar
  40. Schauer R. (1978) Biosynthesis of Sialic Acids, Methods Enzymol. 50:374–386.PubMedCrossRefGoogle Scholar
  41. Schauer R. (1982) Chemistry, Metabolism and Biological Functions of Sialic Acids, Adv. Carbohydr. Chem. Biochem. 40:131–234.PubMedCrossRefGoogle Scholar
  42. Schauer R. (1983) Sialic Acids as Potential Determinants on Differentiation Antigens, Biochem. Soc. Transact. 11:270–271.Google Scholar
  43. Schauer R. (1985) Sialic Acids and their Roles as Biological Masks, Trends Biochem. Sci. 10:357–360.CrossRefGoogle Scholar
  44. Schauer R. (1986) Metabolism of O-Acetyl Groups of Sialic Acids, Methods Enzymol., in press.Google Scholar
  45. Schauer R., Schröder C. and Shukla A.K. (1984a) New Techniques for the Investigation of Structure and Metabolism of Sialic Acids, in: Ganglioside Structure, Function and Biomedical Potential, Adv. Exp. Med. Biol. Vol. 174, Ledeen R.W., Yu R.K., Rapport M.M. and Suzuki, K. eds., Plenum Press, New York, pp. 75–86.Google Scholar
  46. Schauer R, Shukla A.K., Schröder C. and Müller E. (1984b) The Anti-Recognition Function of Sialic Acids: Studies with Erythrocytes and Macrophages, Pure Appl. Chem. 56:907–921.CrossRefGoogle Scholar
  47. Schauer R., Sander-Wewer M., Gutschker-Gdaniec G.H.M., Roggentin P., Randow E.A. and Hobrecht R. (1985) Siali-dase Activity in the Sera of Patients and Rabbits with Clostridial Myonecrosis, Clin. Chim. Acta 146:119–127.PubMedCrossRefGoogle Scholar
  48. Schröder C., Nöhle U., Shukla A.K. and Schauer R. (1983) Improved Methods for the Isolation and Structural Analysis of N-Glycolylneuraminic Acid in Man, in: Glycocon-jugates, Proc. 7th Int. Symp., Chester M.A., Heinerd D, Lundblad A. and Svensson S, eds., Rahms, Lund, pp. 162–163.Google Scholar
  49. Semino G.A., Restani P. and Cerletti P. (1985) Effect of Bound Carbohydrate on the Action of Trypsin on Lupin Seed Glycoproteins, J. Agricult. Food Chem. 33:196–199.CrossRefGoogle Scholar
  50. Shukla A.K. and Schauer R. (1982) Fluorimetric Determination of Unsubstituted and 9(8)-O-Acetylated Sialic Acids in Erythrocyte Membranes, Hoppe-Seyler’s Z. Physiol. Chem. 363:255–262.PubMedCrossRefGoogle Scholar
  51. Smith D.F. and Ginsburg, V. (1980) Antibodies against Sialyl-oligosaccharides Coupled to Protein, J. Biol. Chem. 255:55–59.PubMedGoogle Scholar
  52. Stahl P.D., Wileman T.E., Diment S. and Shepherd V.L. (1984) Manose-Specific Oligosaccharide Recognition by Mononuclear Phagocytes, Biol. Cell 51:215–218.PubMedGoogle Scholar
  53. Staub C.A. (1985) Cold Reacting Antibodies Recognizing Antigens Dependent on N-Acetylneuraminic Acid, Transfusion 25:414–416 (1985)Google Scholar
  54. Sugita M. (1979) Studies on the Glycosphingolipids of the Starfish, Asterina pectinifera. II. Isolation and Characterization of a Novel Ganglioside with an Internal Sialic Acid Residue, and III. Isolation and Structural Studies of Two Novel Gangliosides Containing Internal Sialic Acid Residues, J. Biochem. 86:289–300, 765–772, 1979.PubMedGoogle Scholar
  55. Taylor P.V. and Hancock K.W. (1979) Effect of Neuraminidase on Immunogenicity of Early Mouse Trophoblast, Transplantation 28:256–257.PubMedCrossRefGoogle Scholar
  56. Thurin J., Herlyn M., Hindsgaul O., Strömberg N., Karlsson K.-A., Elder D., Steplewski Z. and Koprowski H. (1985) Proton NMR and Fast-Atom Bombardment Mass Spectrometry Analysis of the Melanoma-Associated Ganglioside 9-O-Acetyl-GD3, J. Biol. Chem. 260:14556–14563.PubMedGoogle Scholar
  57. Tsai C.-M., Zopf D.A., Yu R.K., Wistar R.Jr. and Ginsburg V. (1977) A Waldenstrom macroglobulin that is both a cold agglutinin and a cryoglobulin because it binds N-acetyl-neuraminosyl residues, Proc. Natl. Acad. Sci. U.S.A. 74:4591–4594.PubMedCrossRefGoogle Scholar
  58. Van der Meer A., Kamerling J.P., Vliegenthart J.F.G., Schmid K. and Schauer R. (1983) Fucopyranosyl-(1->4)-N-Glyco-lylneuraminic Acid, A Constituent of Glycoproteins of the Cuvierian Tubules of the Sea Cucumber Holothuria forskali Delia Chiaje, Biochim. Biophys. Acta 757:371–376.Google Scholar
  59. Varki A. and Kornfeld S. (1980) Structural Studies of Phosphorylated High Mannose-type Oligosaccharides, J. Biol. Chem. 255:10847–10858.PubMedGoogle Scholar
  60. Yasue S., Handa S., Miyagawa S., Inoue J., Hasegawa A. and Yamakawa T. (1978) Difference in Form of Sialic Acid in Red Blood Cell Glycolipids of Different Breeds of Dogs, J. Biochem. (Tokyo) 83:1101–1107.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Roland Schauer
    • 1
  1. 1.Biochemisches InstitutChristian-Albrechts-UniversitätKielFederal Republic of Germany

Personalised recommendations