Biochemistry and Lectin Binding Properties of Mammalian Salivary Mucous Glycoproteins

  • Anthony Herp
  • Carol Borelli
  • Albert M. Wu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 228)


Mucus is a complex exocrine secretion that covers the epithelial linings of higher animals. This secretion is derived from different types of epithelial glands which are composed of a variety of specialized cells. Consequently, tear, sputum, saliva, gastric juice, colonic and cervical mucus are all composed of a heterogeneous mixture of secretory products. Salivary mucus is produced by several glands (Table I). The bulk of it is derived from three main organ glands, namely the parotid which is serous in nature, the submandibular which contains both mucous and serous type acini, and the predominantly mucus secreting sublingual gland (1–5). In addition, numerous so-called minor salivary glands are dispersed throughout the oral soft tissue (6,7). These labial glands are composed mainly of mucous secreting cells, and consequently are a major source of the total mucins in saliva although they comprise only some 10% of the salivary volume produced daily. Mixed salivary secretions contain some 99.5% water; the remainder is made up of glycocon jugates, lipids, proteins, ions and small metabolites (8–12) . Due to its great variety of components, saliva plays multiple physiological roles.


Sialic Acid Blood Group Submandibular Gland Streptococcus Mutans Specific Lectin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Quintarelli, Histochemical identification of salivary mucins. Ann. N.Y. Acad. Sci. 106:339–363 (1963).PubMedCrossRefGoogle Scholar
  2. 2.
    J.M. Shakleford and W.H. Wilborn, Structural and histochemical diversity in mammalian salivary glands, Alabama J. Med. Sci. 5:180–203 (1968).Google Scholar
  3. 3.
    Banks, W.G., Applied Veterinary Histology. Williams Nilkins. Baltimore (1981).Google Scholar
  4. 4.
    Dellmanns, H.D., Veterinary Histology. Lea & Febiger, Philadelphia (1971).Google Scholar
  5. 5.
    G. Quintarelli, S. Tsuiki, Y. Hashimoto and W. Pigman, Studies of sialic acid-containing mucins in bovine submaxillary and rat sublingual glands. J. Histochem. Cytochem. 5:176–183 (1961).CrossRefGoogle Scholar
  6. 6.
    L.R. Eversole, The histochemistry of mucosubstances in human minor salivary glands. Arch. Oral Biol. 2 7:1235–1239 (1972).Google Scholar
  7. 7.
    D.R. Green and G. Embery, Partial chemical characterization and biological activities of sulphated glycoproteins isolated from in vivo pilocarpine-stimulated secretions of rat minor salivary glands. Arch. Oral Biol. 29:859–863 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    R.C. Caldwell and W. Pigman, Disc electrophoresis of human saliva in polyacrylamide gel. Arch. Biochem. Biophys. 110:91–96 (1965).PubMedCrossRefGoogle Scholar
  9. 9.
    B.L. Slomiany, M. Aono, V.L.N. Murty, A. Slomiany, M.J. Levine and L.A. Tabak, Lipid composition of submandibular saliva from normal and cystic fibrosis individuals. J. Dent. Res. 61:1163–1166 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    A.Bennick, Salivary acidic proline-rich proteins. Mol. Cell. Biochem. 45:83–99 (1982)Google Scholar
  11. 11.
    J.A. Young and C.A. Schneyer, Composition of saliva in mammalia. Australian J. Exp. Biol. Med. Sci.5.9: 1–53 (1981).CrossRefGoogle Scholar
  12. 12.
    M. Mogi, B.Y. Hiraoka, K. Fukasawa, M. Harada, T. Kage and T. Ching, Two-dimensional electrophoresis in the analysis of a mixture of human sublingual and submandibular salivary proteins. Arch. Oral Biol.31:119–125 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    A.P. Vreugdenhil, A.V. Nieuw Amerongen, G.L. Dange and P.A. Roukema, Localization of amylase and mucins in the major salivary glands of the mouse. Histochem. J. 14: 767–780 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    M.S. Finkelstein, M. Tanner and M.L. Freedman, Salivary and serum I levels in a geriatric outpatient population. J. Clin. Immunol. 4:85–91 (1984).PubMedCrossRefGoogle Scholar
  15. 15.
    M.R. Allansmith, J.L. Ebersole and C.A. Burns, I antibody levels in human tears, saliva and serum, Ann. N.Y. Acad. Sci. 409:166–168 (1983).CrossRefGoogle Scholar
  16. 16.
    R.R. Arnold, M.F. Cole and J.R. Mhee, A bactericidal effect of human lactoferrin. Science 197:263–265 (1975).CrossRefGoogle Scholar
  17. 17.
    J.D. Rudney, K.C. Kajander and Q.T. Smith, Correlation between human salivary levels of lysozyme, lactoferrin, salivary peroxidase and secretory immunoglobulin A with different stimulatory states and over time. Arch. Oral Biol. 30:765–771, (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    B. L. Lamberts, K.M. Pruitt, E.D. Pederson and M.P.Golding, Comparison of salivary peroxidase system components in caries-free and caries-active naval recruits. Caries Res. 25:488–494 (1984).CrossRefGoogle Scholar
  19. 19.
    M.G. Humphreys-Behrer, Strain-specific differences in the proline-rich proteins and glycoproteins induced in rat salivary gland by chronic isoprenaline treatment. Biochem. J. 230:369–378, (1985).Google Scholar
  20. 20.
    M.N. Hatton, R.E. Loomis, M.J. Levine and L.A. Taback, Masticatory lubrication. Biochem. J. 230:817–820 (1985).PubMedGoogle Scholar
  21. 21.
    J.R. Clamp, The relationship between the immune system and mucus in the protection of mucous membranes. Biochem. Soc. Trans. 22:754–756 (1984).Google Scholar
  22. 22.
    P.A. Murray, M.J. Levine, L.A. Tabak, and M.S. Reddy, Specificity of salivary-bacterial interactions: II. Evidence for a lectin on Streptococcus sanguis with specificity for a NeuAcα2→3Gaiβ1→3GalNac sequence. Biochem. Biophys. Res. Commun. 106:390–396 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    J. Parkkinen, J. Finne, M. Achtman, V. Väisänen and T.K. Korhonen, Escherichia coli strains binding neuraminylα2→3 galactosides. Biochem. Biophys. Res. Commun. III:456–4 61 (1983).Google Scholar
  24. 24.
    R.J.Gibbons and J.V. Quershi, Selective binding of blood group-reactive salivary mucins by Streptococcus mutans and other oral organisms. Infect. Immun. 22: 665–671 (1978).Google Scholar
  25. 25.
    K. Landsteiner and R.A. Harte, On group specific A substances. IV. The substance from hog stomach. J.Exp. Med. 72:551–562 (1940).Google Scholar
  26. 26.
    F.M. Burnet, Mucins and mucoids in relation to influenza virus action. III. Inhibition of virus haemagglutination by glandular mucins. Australian J. Exp. Biol. Med. Sci. 26:311–319 (1948).Google Scholar
  27. 27.
    A. Gottschalk, Carbohydrate residue of a urine muco- protein inhibiting influenza virus haemagglutination. Nature 170:662–663 (1952).PubMedCrossRefGoogle Scholar
  28. 28.
    O. Hammarsten, Uber das Mucin der Submaxillardrüse. I. Darstellung, Zusammensetzung und Eigenschaften des Submaxillarismucins. Hoppe-Seyler’s Z. 12:163–195 (1888).Google Scholar
  29. 29.
    P. Vaith and G. Uhlenbruck, The Thomsen agglutination phenomenon: a discovery revisited 50 years later. Z. Immun. Forsch. 154:1–14 (1978).Google Scholar
  30. 30.
    G.W.G. Bird, Anti-T in peanuts. Vox Sang.9: 748–749 (1964).PubMedCrossRefGoogle Scholar
  31. 31.
    D.B. Thomas and R.J. Winzler, Structural studies on human erythrocyte glycoproteins alkali-labile oligosaccharides. J. Biol. Chem. 244:5943–5946 (1969).PubMedGoogle Scholar
  32. 32.
    E. Lisowska, Antigenic Properties of human erythrocyte glycophorins in Molecular Immunology of Complex Carbohydrates. Wu, A.M., Ed. Plenum Press. New York and London (1987).Google Scholar
  33. 33.
    G.F. Springer, P.R. Desai, M.S. Murthy, H.J. Yang and E.F. Scanlon, Precursors of the blood group MN antigens as human carcinoma-associated antigens. Transfusion 15:223–247 (1979).Google Scholar
  34. 34.
    R. Schauer, Occurrence of Sialic Acids in Sialic Acids, Chemistry, Metabolism and Function. Springer Verlag, Wien, New York (1982) p. 5–27.Google Scholar
  35. 35.
    R. Schauer, Chemistry, metabolism and biological functions of sialic acids. Adv. Carbohydrate Chem. Biochem. 40:131–234 (1982).CrossRefGoogle Scholar
  36. 36.
    R. Schauer, Sialic acids and their role as biological masks. Trends Biochem. SCi. 10:357–361 (1985).CrossRefGoogle Scholar
  37. 37.
    D.C. Gowda, V.P. Bhavanandan and E.A. Davidson, Structures of O-linked oligosaccharides present in the proteoglycans secreted by human mammary epithelial cells. J. Biol. Chem. 261:4935–4939 (1986).PubMedGoogle Scholar
  38. 38.
    J. Haverkamp, R. Schauer and M. Wember, Neuraminic acid derivatives newly discovered in Humåns: N-acetyl-9–0- lactoyl-neuraminic acid, N-9-0-diacetylneuraminic acid and N-acetyl-2,3-dehydro-2-deoxyneuraminic acid. Hoppe- Seyler’s Z. 357:1699–1705 (1976).CrossRefGoogle Scholar
  39. 39.
    G. Tettamanti and W. Pigman, Purification and characterization of bovine and ovine submaxillary mucins. Arch. Biochem. Biophys. 124:41–50 (1968).PubMedCrossRefGoogle Scholar
  40. 40.
    W.B. Clarke and R.J. Gibbons, Influence of salivary components and extracellular polysaccharide synthesis from sucrose on the attachment of Streptococcus mutans 6715 to hydroxyapatite surfaces. Infect. Immun. 28:514–523 (1977).Google Scholar
  41. 41.
    J.M. Creeth, K.R. Bhasker, J.R. Horton, I. Das, M. Lopez- Vidriero and L. Reid, The separation and characterization of bronchial glycoproteins by density gradient methods. Biochem. J. 267:557–569 (1977).Google Scholar
  42. 42.
    Carlstedt, H. Lindgren, J.K. Sheehan, U. Ulmsten and L. Wingerup, Isolation and characterization of human cervical-mucous glycoproteins. Biochem. J. 211:13–22 (1983).PubMedGoogle Scholar
  43. 43.
    M. Mantle, D. Mantle and A. Allen, Polymeric structure of pig small-intestinal mucus glycoprotein. Dissociation by proteolysis or by reduction of disulfide bridges. Biochem. J. 195:211–285 (1981).Google Scholar
  44. 44.
    G. Lamblin, M. Lhermitte, P. Degand, P. Roussel and H. Slayter, Chemical and physical properties of human bronchial mucus glycoproteins. Biochimie 61:23–43 (1979).PubMedCrossRefGoogle Scholar
  45. 45.
    C.E. Snyder, C.E. Nadziejko and A. Herp, Isolation of bronchial mucins from cystic fibrosis sputum by use of citraconic anhydride. Carbohydr. Res. 105:81–93 (1982).Google Scholar
  46. 46.
    N. Fleming, M. Brent, R. Arellano and J.F. Forstner, Purification and immunofluorescent localization of rat submandibular mucin. Biochem. J. 205:225–233 (1982).PubMedGoogle Scholar
  47. 47.
    K.G. Holden, N.C.F. Yim, L.J. Griggs and J.A. Weisbach, Gel electrophoresis of mucous glycoproteins. I. Effect of gel porosity. Biochemistry 10:3105–3109 (1971).PubMedCrossRefGoogle Scholar
  48. 48.
    K.G. Holden, N.C.F. Yim, L.J. Griggs and J.A. Weisbach, Gel electrophoresis of mucous glycoproteins. II. Effect of physical deaggregation and disulfide-bond cleavage. Biochemistry 10:3110–3113 (1971).PubMedCrossRefGoogle Scholar
  49. 49.
    N. Payza, M. Robert and A. Herp, The molecular weight of bovine and porcine submaxillary mucins. Int. J. Protein Res.2:109–115 (1970).PubMedCrossRefGoogle Scholar
  50. 50.
    S.E. Harding, An analysis of the heterogeneity of mucins. Biochem. J. 219:1061–1064 (1984).PubMedGoogle Scholar
  51. 51.
    W. Pigman, Submandibular and sublingual glycoproteins. In The Glycoconjugates (M. Horowitz and W. Pigman, Eds.). Vol. 1, 137–152 (1977), Academic Press, Inc. New York.Google Scholar
  52. 52.
    Nasir-Ud-Din, R.W. Jeanloz, G. Lamblin, P. Roussel, H. Van Halbeek, J.H.G. Mutsaers and J.F.G. Vliegenthart, Structure of sialyloligosaccharides isolated. from bonnet monkey (Macaca radiata) cervical mucus glycoproteins exhibiting blood group activity. J. Biol. Chem. 261: 1992–1997 (1986).PubMedGoogle Scholar
  53. 53.
    A.M. Wu and W. Pigman, Preparation and characterization of armadillo submandibular glycoproteins. Biochem. J. 161:31–41 (1977).Google Scholar
  54. 54.
    C.G. Lombart and R.J. Winzler, Isolation and characterization of canine submaxillary mucin. Biochem. J. 128:915–911 (1972).Google Scholar
  55. 55.
    B.B. Dutta., S. Ghosh, A. Das and C.V.N. Rao, Isolation and characterization of goat submaxillary-mucin. Carbohydr. Res. 101:101–108 (1982).PubMedCrossRefGoogle Scholar
  56. 56.
    F. Downs and A. Herp, Chemical studies on a hamster sublingual glycoprotein. Int. J. Peptide Protein Res. 10:229–234 (1977).CrossRefGoogle Scholar
  57. 57.
    F. Downs, M. Harris and A. Herp, The isolation and properties of a glycoprotein from hamster submaxillary gland. Arch. Oral Biol. 21:307–311 (1976).PubMedCrossRefGoogle Scholar
  58. 58.
    M.M. Baig, R.J. Winzler and O.M. Rennert, Isolation of mucin from human submaxillary secretions. J. Immunol. 111:1826–1833 (1973).PubMedGoogle Scholar
  59. 59.
    P.A. Roukema, C.H. Oderkerk and M.S. Salkinoja-Salonen, The murine sublingual and submandibular mucins, their isolation and characterization. Biochim. Biophys. Acta 428:432–440 (1976).PubMedGoogle Scholar
  60. 60.
    P.A. Denny and P.C. Denny, Purification and biochemical characterization of a mouse submandibular sialomucin. Carbohydr. Res. 57:265–274 (1980).CrossRefGoogle Scholar
  61. 61.
    N. Payza, S. Rizvi and W. Pigman, Studies of action of acids and bases on porcine submaxillary mucin. Arch. Biochem. Biophys. 129:68–14 (1969).PubMedCrossRefGoogle Scholar
  62. 62.
    J. Moschera and W. Pigman, The isolation and characterization of rat sublingual mucus-glycoprotein. Carbohydr. Res. 40:53–61 (1975).PubMedCrossRefGoogle Scholar
  63. 63.
    L.A. Tabak, L. Mirels, L.D. Monte, A. L. Ridall, M.J. Levine, R.E. Loomis, F. Lindauer, M.S. Reddy and B.J. Baum, Isolation and characterization of a mucin-glycoprotein from rat submandibular glands. Arch. Biochem. Biophys. 242:383–392 (1985).PubMedCrossRefGoogle Scholar
  64. 64.
    Y. Hashimoto and W. Pigman, Action of proteolytic enzymes on purified bovine submaxillary mucins. N.Y. Acad. Sci. 106:233–246. (1962).CrossRefGoogle Scholar
  65. 65.
    B. Anderson, N. Seno, P. Sampson, J.G. Riley, P. Hoffman and K. Meyer, Threonine and serine linkage in mucopolysaccharides and glycoproteins. J. Biol. Chem. 239:PC 2716–2717 (1964).Google Scholar
  66. 66.
    D. M. Carlson, Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J. Biol. Chem. 243:616–626 (1968).Google Scholar
  67. 67.
    F. Downs, A. Herp, J. Moschera and W. Pigman, β-Elimination and reduction reactions and some applications of dimethylsulfoxide on submaxillary glycoproteins. Biochim. Biophys. Acta 328:182–192 (1973).PubMedGoogle Scholar
  68. 68.
    C-C.W. Chao, J.P. Vergnes and S.I. Brown, O-Glycosidic linkage in glycoprotein isolates from human ocular mucus. Exp. Eye Res. 37:533–541 (1983).PubMedCrossRefGoogle Scholar
  69. 69.
    R.D. Marshall, Determination of the 4-N-2-acetamido-2- deoxy-β- D-glucopyranosyl- L-asparagine linkage in glycoproteins. Methods Carbohydr. Chem. 7:212–220 (1976).Google Scholar
  70. 70.
    R.G. Spiro, Determination of the 5–0-β- D-galactopyrano- sylhydroxy- L-lysine linkage in glycoproteins. Methods Carbohydr. Chem.7:205–211 (1976).Google Scholar
  71. 71.
    S. Ogata and K.O. Lloyd, Mild alkaline borohydride treatment of glycoproteins — a method for liberating both N- and O-linked carbohydrate chains. Anal. Biochem. 119:351–359 (1982).PubMedCrossRefGoogle Scholar
  72. 72.
    J.R. Neeser, G.l.c. of methyloxime and alditol acetate derivatives of neutral sugars, hexosamines, and sialic acids: “one pot” quantitative determination of the carbohydrate constituents of glycoproteins and a study of the selectivity of alkaline borohydride reductions. Carbohydr. Res. 138:189–198 (1985).PubMedCrossRefGoogle Scholar
  73. 73.
    E. F. Hounsell, N.J. Pickering, M.S. Stoll, A.M. Lawson and T. Feizi, The effect of mild alkali and alkaline borohydride on the carbohydrate and peptide moieties of fetuin. Biochem. Soc. Trans. 12:607–610 (1984).PubMedGoogle Scholar
  74. 74.
    H. Debray, G. Strecker and J. Montreuil, Effect of alkalis on N-glycosidic linkages of glycoproteins. Biochem. Soc. Trans. 12:611–612 (1984).PubMedGoogle Scholar
  75. 75.
    K. Tanaka and W. Pigman, Improvements in hydrogenation procedure for demonstration of 0-threonine glycosidic linkages in bovine submaxillary mucin. J. Biol. Chem. 240:PC1487–1488 (1965).PubMedGoogle Scholar
  76. 76.
    A. Herp, A.M. Wu and J. Moschera, Current concepts of the structure and nature of mammalian salivary mucous glycoproteins. Mol. Cell. Biochem. 23:27–44 (1979).PubMedCrossRefGoogle Scholar
  77. 77.
    F. Downs, C. Peterson, V.L.N. Murty and W. Pigman, Quantitation of the β-elimination reaction as used on glycoproteins. Int. J. Peptide Protein Res. 10:315–322 (1977).CrossRefGoogle Scholar
  78. 78.
    J.F.G. Vliegenthart, L. Dorland and H. Van Halbeek, High resolution 1H-nuclear magnetic resonance spectroscopy as a tool in the structural analysis of carbohydrates related to glycoproteins. Adv. Carbohydr. Chem. Biochem. 41:209–374 (1983).CrossRefGoogle Scholar
  79. 79.
    K. Dill, Natural-abundance, 13C-nuclear magnetic resonance spectral studies of carbohydrates linked to amino acids and proteins. Adv. Carbohydr. Chem. Biochem. 43:1–49 (1985).PubMedCrossRefGoogle Scholar
  80. J.H.G.M. Mutsaers, H. Van Halbeek, J.F.G. Vliegenthart, A.M. Wu, and E.A. Kabat, Typing of core and backbone domains of mucin-type oligosaccharides from human ovarian- cyst glycoproteins by 500-MHz 1H-NMR spectroscopy. Eur. J. Biochem. 157:139–146 (1986).,PubMedCrossRefGoogle Scholar
  81. 81.
    P.A. Denny and P.C. Denny, A mouse submandibular sialomucin containing both N- and O-glycosylic linkages. Carbohydr. Res. 110:305–314 (1982).PubMedCrossRefGoogle Scholar
  82. 82.
    A.V. Nieuw Amerongen, C.H. Oderkerk, P.A. Roukema, J.H. Wolf, J.J.W. Lisman and B. Overdijk, Murine submandibular mucin (MSM): a mucin carrying N — and O-glycosylically bound carbohydrate-chains. Carbohydr. Res. 115:C1-C5 (1983).CrossRefGoogle Scholar
  83. 83.
    A.M. Wu, A. Slomiany, A. Herp and B.L. Slomiany, Structural studies on the carbohydrate units of armadillo submandibular glycoprotein. Biochim. Biophys. Acta 575: 297–304 (1979).Google Scholar
  84. 84.
    A. Slomiany and B.L. Slomiany, Structures of the acidic oligosaccharides isolated from rat sublingual glycoprotein. J. Biol. Chem. 253:7301–7306 (1978).PubMedGoogle Scholar
  85. 85.
    H.P. Buscher, J.Casals-Stenzel and R. Schauer, Identification of N-glycoloyl-O-acetylneuraminic acids and N-acety1-O-glycoloylneuraminic acids by improved methods for detection of N-acyl and O-acyl groups and by gas-liquid chromatography. Eur. J. Biochem. 50:71–82 (1974).PubMedCrossRefGoogle Scholar
  86. 85A.
    G. Reuter, R. Pfeil, S. Stoll, R. Schauer, Identification of new sialic acids derived from glycoprotein of bovine submandibular gland. Eur. J. Biochem. 134:139–143 (1983).PubMedCrossRefGoogle Scholar
  87. 86.
    J.P. Kamerling, J.F.G. Vliegenthart, C.Versluis and R. Schauer, Identification of O-acetylated N-acylneuraminic acid by mass spectrometry. Carbohydr. Res. 41:1–11 (1975).CrossRefGoogle Scholar
  88. 87.
    B.L.Slomiany, A.Slomiany and A. Herp, Studies on the occurrence of disialosyl groups in glycoproteins of salivary glands. Eur. J. Biochem. 90:255–266 (1978).Google Scholar
  89. 88.
    S. Ando and R.K. Yu, Isolation and characterization of a novel trisialoganglioside, GTLA from human brain. J. Biol. Chem. 252:6247–6250 (1977).PubMedGoogle Scholar
  90. 89.
    H.S. Slayter, G. Lamblin, A. Lreut, C. Galabert, N. Houdret, P. Degand and P. Roussel, Complex structure of human bronchial mucus glycoprotein. Eur. J. Biochem. 242:209–218 (1984).CrossRefGoogle Scholar
  91. 90.
    M.W. Leigh, P-W. Cheng, J.L. Carson and T.F. Boat, Developmental changes, in glycoconjugate secretion by ferret tracheas. Am. Rev. Respir. Dis. 234:784–790(1986).Google Scholar
  92. 91.
    B.L. Slomiany and K. Meyer, Isolation and structural studies of sulfated glycoproteins of hog gastric mucosa. J. Biol. Chem. 247:5062–5070 (1972).PubMedGoogle Scholar
  93. 92.
    M. Bertolini and W. Pigman, The existence of oligosaccharides in bovine and ovine submaxillary mucins, Carbohydr. Res. 24::53–63. (1970).Google Scholar
  94. 93.
    T. Tsuji and T. Osawa, Carbohydrate structures of bovine submaxillary mucin. Carbohyd. Res. 151:391–402 (1986).CrossRefGoogle Scholar
  95. 94.
    C.G. Lombart and R.J. Winzler, Isolation and characterization of oligosaccharides from canine submaxillary mucin. Eur. J. Biochem. 49:11–86 (1974).CrossRefGoogle Scholar
  96. 95.
    B. Dutta and C.V.N. Rao, Structures of carbohydrate chains of glycoprotein isolated from goat submaxillary mucin. Biochim. Biophys. Acta 701:12–85 (1982).CrossRefGoogle Scholar
  97. 96.
    M.S. Reddy, M.J. Levine and A. Prakobphol, Oligosaccharide structures of the low-molecular-weight salivary mucin from a normal individual and one with cystic fibrosis. J. Dent. Res. 64:33–36 (1985).PubMedCrossRefGoogle Scholar
  98. 97.
    D.H. Van Den Eijnden, W.E.C.M.Schiphorst and E.G. Berger, Specific detection of N-acetylglucosamine containing oligosaccharide chains on ovine submaxillary asialomucin. Biochim. Biophy. Acta 755:32–39 (1983).Google Scholar
  99. 98.
    H. Van Halbeek, L. Dorland, J. Haverkamp, G.A. Veldink, J.F.G. Vliegenthart, B. Fournet, G. Ricart, J. Montreuil, W. Gathmann and D. Aminoff, Structure determination of oligosaccharides isolated from A+, H+ and A-H- hog- submaxillary gland mucin glycoproteins, by 3 60-MHz 1H-nmr spectroscopy, permethylation analysis and mass spectrometry. Eur. J. Biochem. 118:487–495 (1981).PubMedCrossRefGoogle Scholar
  100. 99.
    A. V. Savage, P.L. Koppen, W.E.C.M. Schiphorst, L.A.W. Trippelitz, H. Van Halbeek, J.F.G. Vliegenthart and D.H. Van Den Eijnden, Porcine submaxillary mucin contains α2->3 and α2→6-linked N-acetyl- and N-glycolyl-neuraminic acid. Eur. J. Biochem. 160:123–129 (1986).PubMedCrossRefGoogle Scholar
  101. 100.
    N. Payza, L. Martinez and W. Pigman, Immunological and chemical studies on porcine submaxillary mucins. Anim. Blood Groups. Biochem. Genet. 1:195–206 (1970).Google Scholar
  102. 101.
    R.C. Caldwell and W. Pigman, The carbohydrates of human submaxillary glycoproteins in secretors and non-secretors of blood group substances. Biochim. Biophys. Acta 101:157–165 (1965).PubMedGoogle Scholar
  103. 102.
    M. Brockhaus, M. Wysocka, J.L. Magnani, Z. Steplewski, H. Koprowski and V. Ginsburg, Normal salivary mucin contains the gastrointestinal cancer-associated antigen detected by monoclonal antibody 19–9 in the serum mucin of patients. Vox Sang. 48:34–38 (1985).PubMedCrossRefGoogle Scholar
  104. 102a.
    J.M. Wieruszeski, J.C. Michalski, J. Montreuil, G. Strecker, J.P. Katalinic, H. Egge, H. van Halbeek, J.H.G.M. Mutsaers, and J.F.G. Vliegenthart, Structure of the monosialyl oligosaccharides derived from salivary gland mucin glycoproteins of the Chinese swiftlet (genus Collocalla) Characterization of novel types of extended core structure, Galβ(1→3) [GlcNAcβ (1→6)] GalNAcα (1→3) GalNAc(-ol), and of chain termination, [Galα (1→4)] o-1 [Galβ(1→4)]2 GlcNAcβ (1→). J. Biol. Chem. 2 62:6650–6657 (1987).Google Scholar
  105. 103.
    Gottschalk, The basic structure of glycoproteins and problems of their chemical and physicochemical analysis. N.Y. Acad. Sci. 106:168–176 (1963).CrossRefGoogle Scholar
  106. 104.
    K. Barrett-Bee, G. Bedford and P. Loftus, The use of high resolution carbon-13 NMR in the study of mucus. Adv. Exp. Med. Biol. 144:109–111 (1982).PubMedGoogle Scholar
  107. 105.
    G.P. Sachdev, J.M. Zodrow and R. Carubelli, Hydrophobic interaction of fluorescent probes with fetuin, ovine submaxillary mucin and canine tracheal mucins. Biochim. Biophys. Acta 580:85–90 (1979).PubMedGoogle Scholar
  108. 106.
    A.Allen, Mucus — a protective secretion of complexity. Trends Biochem. Sci. 8:169–173 (1983).CrossRefGoogle Scholar
  109. 107.
    G.P. Roberts, The role of disulfide bonds in maintaining the gel structure of bronchial mucus. Arch. Biochem. Biophys. 173:528–537 (1976).PubMedCrossRefGoogle Scholar
  110. 108.
    A.0. Jenssen and 0. Smidsrod, Preparation of enzymatically active lysozyme from sputum and its distribution between the sol and gel phases. Eur. J. Respir. Dis. 63:584–590 (1982).PubMedGoogle Scholar
  111. 109.
    N. Houdret, G. Lamblin, A. Scharfman, D.Humbert and P. Roussel, Activation of bronchial mucin proteolysis by 4- aminophenylmercuric acetate and disulfide reducing agents. Biochim. Biophys. Acta 755:24–29 (1983).Google Scholar
  112. 110.
    I.P. Williams, R.L. Hall, R.J. Miller and P.S. Richardson, Analyses of human tracheobronchial mucus from healthy subjects. Eur. J. Respir. Dis. 63:510–515 (1982).Google Scholar
  113. 111.
    P. Roussel, G. Lamblin, N. Houdret, M. Lhermitte and H.S. Slayter, Conformation of human mucus glycoproteins observed by electron microscopy. Biochem. Soc. Trans. 12:617–618 (1984).PubMedGoogle Scholar
  114. 112.
    A. Gottschalk and H.A. Menzie, Studies on mucoproteins. VIII. On the molecular size and shape of ovine submaxillary gland mucoprotein. Biochim. Biophys. Acta 54:226–235 (1961).PubMedCrossRefGoogle Scholar
  115. 113.
    H.D. Hill, Jr., J.A. Reynolds and R.L. Hill, Purification, composition, molecular weight, and subunit structure of ovine submaxillary mucin. J. Biol. Chem. 252:3791–3793 (1977).PubMedGoogle Scholar
  116. 114.
    H.D. Hill, Jr., M. Schwyzer, H.M. Steiman and R.L. Hill, Ovine submaxillary mucin. Primary structure and peptide substrates of UDP-N-acetylgalactosamine:mucin transferase. J. Biol. Chem. 252:3799–3804 (1977).PubMedGoogle Scholar
  117. 114a.
    J.P. Aubert, G. Biserte, and M.H. Loucheux-Lefebvre, Carbohydrate-peptide linkage in glycoproteins. Arch. Biochem. Biophys. 175:410–418 (1978).CrossRefGoogle Scholar
  118. 114b.
    N.J. Maeji, T. Inoue, and R. Chujo, The role of the N- acetyl group in determining the conformation of 2 acetamido-2-deoxy-D-galactopyranosyl-threonine-containing peptides. Carbohydr. Res. 162:C4-C8 (1987).CrossRefGoogle Scholar
  119. 114c.
    V.P. Bhavanandan and J.D. Hegarty, Identification of the mucin core protein by cell-free translation of messenger RNA from bovine submaxillary glands. J. Biol. Chem. 262:5913–5917 (1987).PubMedGoogle Scholar
  120. 114d.
    M.C. Rose, W.A. Voter, H. Sage, ’ C.F. Brown and B. Kaufman, Effects of deglycosylation of the architecture of ovine submaxillary mucin glycoprotein. J. Biol. Chem. 259;3167–3172 (1984).PubMedGoogle Scholar
  121. 114e.
    N. Jentoft, R.S. Shogren and T. A. Gerken, The conformation of mucins and O-glycosylated membrane proteins. Federation Proc. 45:2150 (1987).Google Scholar
  122. 114f.
    R.L. Shogren, N. Jentoft, T.A. Gerken, A.M. Jamieson, and J. Blackwell, Light-scattering studies of fractionated ovine submaxillary mucin. Carbohydr. Res. 160:311–328 (1987).Google Scholar
  123. 115.
    R. Shogren, A.M. Jamieson and J. Blackwell, Solution properties of porcine submaxillary mucin. Biopolymers 22:1657–1675 (1983).PubMedCrossRefGoogle Scholar
  124. 116.
    W.T.J. Morgan and W.M. Watkins, The inhibition of the haemmagglutinins in plant seeds by human blood group substances and simple sugars. Brit. J. Exp. Pathol. 34:94–103 (1953).Google Scholar
  125. 117.
    H. Lis and N. Sharon, Lectins as molecules and as tools. Ann. Rev. Biochem. 55:35–67 (1986).PubMedCrossRefGoogle Scholar
  126. 118.
    G. Ashwell and J. Harford, Carbohydrate-specific receptors of the liver. Ann. Rev. Biochem. 51:531–554 (1982).PubMedCrossRefGoogle Scholar
  127. 119.
    I.E. Liener, N. Sharon, and I.J. Goldstein, The Lectins. Properties, Functions, and Applications in Biology and Medicine. Academic Press, Orlando, FL, (1986).Google Scholar
  128. 120.
    I.J. Goldstein and I.E. Etzler, Chemical Toxonomy, Molecular Biology and Function of Plant Lectins. Alan R. Liss. New York, (1983).Google Scholar
  129. 121.
    G.G. Sahagian, The mannose 6-phosphate receptor: function, biosynthesis and translocation. Biol. Cell 51:207–214 (1984).PubMedGoogle Scholar
  130. 122.
    M. A. Lehrman and R.L. Hill, The binding of fucose containing glycoproteins by hepatic lectins. Purification of a fucose-binding lectin from rat liver. J. Biol. Chem. 261:7419–7425 (1986).PubMedGoogle Scholar
  131. 123.
    E.F. Neufeld and G. Ashwell, Carbohydrate recognition systems for receptor-mediated pinocytosis. In The Biochemistry of Glycoproteins and Proteoglycans (W.J. Lennarz, Ed.). Plenum Press, New York, pp 241–266 (1980).Google Scholar
  132. 124.
    A.M. Wu, Differential binding characteristics and applications of DGalβ1→3DGalNac specific lectins, Mol. Cell. Biochem. 61:131–141 (1984).CrossRefGoogle Scholar
  133. 125.
    A.M. Wu and A. Herp, A table of lectin carbohydrate specificities. In Lectins (T.C. Bøg-Hansen and J. Breborowicz, Eds.). W. de Gruyter & Co., New York, Vol. IV., pp 629–636, (1985).Google Scholar
  134. 126.
    P.J.A. Holt, J.H. Anglin and R.E. Nordquist, Localization of specific carbohydrate configurations in human skin using fluorescein-labeled lectins. Br. J. Dermatol. 100:237–245 (1979).PubMedCrossRefGoogle Scholar
  135. 127.
    G.L. Nicolson and S.J. Singer, The distribution and asymmetry of mammalian cell surface saccharides utilizing ferritin-conjugated plant agglutinins as specific saccharide stains. J. Cell Biol. 60:236–248 (1974).PubMedCrossRefGoogle Scholar
  136. 128.
    K. Burridge, Direct identification of specific glycoproteins and antigens in sodium dodecyl sulfate gels, Methods Enzymol. 50:54–64 (1978).PubMedCrossRefGoogle Scholar
  137. 129.
    E.V. Crean and E.F. Rosomando, Developmental changes in membrane-bound enzymes of Dictyostelium discoideum detected by concanavalin A-Sepharose affinity chromatography. Biochem. Biophys. Res. Commun. 75:488–495 (1977).PubMedCrossRefGoogle Scholar
  138. 130.
    I.J. Goldstein, C.E. Hollerman and E.E. Smith, Protein- carbohydrate interaction. II. Inhibition studies on the interaction of concanavalin A with polysaccharides. Biochemistry 4:876–883 (1965).PubMedCrossRefGoogle Scholar
  139. 131.
    Y.Ch. Sekharudu, M. Biswas and V.S.R. Rao, Complex Carbohydrates: 2. The modes of binding of complex carbohydrates to concanavalin A-a computer modelling approach. Int. J. Biol. Marcomol:8:9–19 (1986).CrossRefGoogle Scholar
  140. 132.
    A.M. Wu, E.A. Rabat, F.G. Gruezo, and H.J. Allen, Immunochemical studies on the combining site of the D- galactopyranose and 2-acetamido-2-deoxy-D-galactopyranose specific lectin isolated from Bauhinia purpurea alba seeds. Arch. Biochem. Biophys 204:622–639 (1980).PubMedCrossRefGoogle Scholar
  141. 133.
    D. A. Baker, S. Sugii, E.A. Rabat, R.M. Ratcliffe, P. Hermentin and R.U. Lemieux, Immunochemical studies on the combining sites of Forssman hapten reactive hemagglutinins from Dolichos biflorus, Helix pomatia, and Wistaria floribunda. Biochemistry 22:2741–2750 (1983).PubMedCrossRefGoogle Scholar
  142. 134.
    E.A. Rabat, A. Bendich, A. E. Bezer, and S.M. Beiser, Immunochemical studies on blood groups. IV. Preparation of blood group A substances from human sources and a comparison of their chemical and immunochemical properties with those of the blood group A substance from hog stomach. J. Exp. Med. 85:685–699 (1947).CrossRefGoogle Scholar
  143. 135.
    E. A. Rabat, A. Bendich, A. E. Bezer and V. Knaub, Immunochemical studies on blood groups. VI. The cross- reaction between type XIV antipneumococcal horse serum and purified blood group A, B, and 0 substances from hog and human sources, J. Exp. Med. 87:295–300 (1948).CrossRefGoogle Scholar
  144. 136.
    H.H. Baer, E.A. Kabat, and V. Knaub, Immunochemical studies on blood groups. X. The preparation of blood group A and B substances and an inactive substance from individual horse stomachs and of blood group B substance from human saliva. J. Exp. Med. 91, 105–114 (1950).PubMedCrossRefGoogle Scholar
  145. 137.
    W.M. Watkins, Blood group specific substances. In Glycoproteins, 2nd ed. (A. Gottschalk, ed.). Part B. pp 830–891.(1972) Elsevier Publ., New York.Google Scholar
  146. 138.
    A.M. Wu, E.A. Kabat, F.G. Gruezo and R.D. Poretz, Immunochemical studies on the reactivities and combining sites of the D-galactopyranose- and 2-acetamido-2-deoxy-D- galactopyranose-specific lectin purified from Sophora japónica seeds. Arch. Biochem. Biophys. 209:191–203 (1981).PubMedCrossRefGoogle Scholar
  147. 139.
    M.S. Sarkar, A.M. Wu and E. A. Kabat, Immunochemical studies on the carbohydrate specificity of Madura pomífera lectin, Arch Biochem. Biophys. 209:204–218 (1981).Google Scholar
  148. 140.
    Y. Takai, Y. Noda, S. Sumitono, S. Sagara and M. Mori, Different bindings to lectin in human submandibular gland after enzymatic digestion. Acta Histochem. 78:111–121 (1986).PubMedGoogle Scholar
  149. 141.
    M.E.A. Pereira, E.A. Kabat, R. Lotan, and N. Sharon, Immunochemical studies on the specificity of the peanut (Arachis hypogaea) agglutinin, Carbohyd. Res. 51:107–118 (1976).Google Scholar
  150. 142.
    T. Irimura and T. Kawaguchi, T. Terao and T. Osawa, Carbohydrate-binding specificities of the so-called galactose-specific phytohemagglutinins. Carbohyd. Res. 39: 317–327 (1975).CrossRefGoogle Scholar
  151. 143.
    T Osawa, T. Irimura and T. Kawaguchi, Bauhinia purpurea agglutinin. Methods Enzymol. 50:361–312 (1978).Google Scholar
  152. 144.
    A.C. Roche, R. Schauer and M. Monsigny, Protein-sugar interactions. Purification by affinity chromatography of limulin, and N-acyl-neuraminidyl-binding protein, FEBS Let. 57:245–249 (1975).CrossRefGoogle Scholar
  153. 145.
    K. Furukawa, J.E. Minor, J.D. Hegarty and V.P. Bhavanandan, Interaction of sialoglycoproteins with wheat germ agglutinin-Sepharose of varying ratio of lectin to Sepharose. Use for the purification of mucin glycoproteins from membrane extracts. J. Biol. Chem. 261:1155-7761 (1986).Google Scholar
  154. 145a.
    V.P. Bhavanandan and A.W. Katlic, The interaction of wheat germ agglutinin with sialoglycoproteins. The role of sialic acid. J. Biol. Chem. 254:4000–4008 (1979).PubMedGoogle Scholar
  155. 146.
    T. Menghi, A.M. Bondi, D. Accili, L. Fumagalli and G. Materazzi, Characterizationin situ of the complex carbohydrates in rabbit oviduct using digestion with glycosidases followed by lectin binding, J. Anat. 140:613–625 (1985).PubMedGoogle Scholar
  156. 147.
    T. Faraggiana, D. Villari, J. Jagirdar and J. Patil, Expression of sialic acid on the alveolar surface of adult and fetal human lungs. J. Histochem. Cytochem. 34:811–816 (1986).PubMedCrossRefGoogle Scholar
  157. 148.
    S.A. Laden, B.A. Schulte and S.S. Spicer, Histochemical evaluation of secretory glycoproteins in human salivary glands with lectin-horseradish peroxidase conjugates. J. Histochem. Cytochem. 32:965–972 (1984).PubMedCrossRefGoogle Scholar
  158. 149.
    B.A. Schulte and S.S. Spicer, Light microscopic detection of sugar residues in glycoconjugates of salivary glands and the pancreas with lectin-horseradish peroxidase conjugates. I. Mouse. Histochem. J. 15:1217–1238Google Scholar
  159. 150.
    B.A. Schulte and S.S. Spicer, Light microscopic detection of sugar residues in glycoconjugates of salivary glands and the pancreas with horseradish-peroxidase conjugates. II. Rat. Histochem. J. 16:3–20 (1984).CrossRefGoogle Scholar
  160. 151.
    P.A. Murray, M.J. Levine, L. A. Tabak and M.S. Reddy, Purification of a sialic acid binding lectin from Streptococcus mitis. Soc. Complex Carbohydr. Annual Meeting, 44 (1983).Google Scholar
  161. 152.
    O. Sobeslavsky, B. Prescott and R.M. Chanock, Adsorption of Mycoplasma pneumoniae to neuraminic acid receptors of various cells and possible role in virulence. J. Bacteriol. 96:695–705 (1968).PubMedGoogle Scholar
  162. 153.
    B.C. McBride and M.T. Gisslow, Role of sialic acid in saliva-induced aggregation of Streptococcus sanguis. Infect. Immun. 18:35–40 (1977).PubMedGoogle Scholar
  163. 154.
    M.J. Levine, M.C. Herzberg, M.S. Levine, S.A. Ellison, M.W. Stinson, H.C. Li and T. van Dyke, Specificity of salivary-bacterial interactions: role of terminal sialic acid residues in the interaction of salivary glycoproteins with Streptococcus sanguis and Streptococcus mutans. Infect. Immun. 19:101–115 (1978).Google Scholar
  164. 155.
    T.Ericson and J. Rundegen, Characterization of a salivary agglutinin with a serotype c strain of Streptococcus mutans. Eur. J. Biochem. 133:255–261 (1983).CrossRefGoogle Scholar
  165. 156.
    C.W.I. Douglas and R.R.B. Russell, The adsorption of human salivary components to strains of the bacterium Streptococcus mutans. Arch. Oral Biol. 25:751–757.(1984)CrossRefGoogle Scholar
  166. 157.
    J.P. Babu, S.N. Abraham, M.K. Dabbous and E.H. Beachey, Interaction of a 60-kilodalt on D-mannose-cont aining salivary glycoprotein with type i fimbriae of Escherichia coli. Infect. Immun. 54:104–108 (1986).PubMedGoogle Scholar
  167. 158.
    T. Feizi, Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature 314:53–57 (1985).PubMedCrossRefGoogle Scholar
  168. 159.
    C.E. Snyder, C.E. Nadziejko and A. Herp, Human bronchial explants in long-term culture: establishing a baseline for secretion. In Vitro 20:95–102 (1984).CrossRefGoogle Scholar
  169. 160.
    D.A. Sens, D.S. Hintz, M.T. Rudisiii, M.A. Sens and S.S. Spicer, Methods in laboratory investigation. Explant culture of human submandibular gland epithelial cells: evidence of ductal origin. Lab. Invest. 52:557–567 (1985).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Anthony Herp
    • 1
  • Carol Borelli
    • 1
  • Albert M. Wu
    • 2
  1. 1.Dept. of BiochemistryNew York Medical CollegeValhallaUSA
  2. 2.Dept. of Veterinary PathologyTexas A&M UniversityCollege StationUSA

Personalised recommendations