Chemistry of Human Erythrocyte Polylactosamine Glycopeptides (Erythroglycans) as Related to ABH Blood Group Antigenic Determinants

  • Roger A. Laine
  • Jeffrey S. Rush
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 228)

Abstract

Twenty-four years after the first discovery in 1900 of the blood group antigens on erythrocytes by Landsteiner and others (1–3) several researchers successfully extracted small amounts of ABH substances from red cell membranes using 95% ethanol (4–7) as an elutrient. These findings that ethanol could extract some ABH substance were confirmed by others in subsequent years leading to the idea that lipids carried the ABH antigens on erythrocytes. The main proponents of this idea were Masamune and his students Hirata, Tokura, and Satoh (8–10) in the 1950’s. Yamakawa, a pioneer in this area, also isolated at the same time a “globoside” fraction containing ABH activity from erythrocyte stroma using methanol-ether (11, 12). Modern knowledge suggests that these substances were probably the shorter, 5–20 sugar lactosaminyl ceramides having terminal ABH groups. Masamune’s student, Hakomori, has performed the most careful and detailed work on the latter class of lipids and has developed methods for their purification and characterization (13).

Keywords

Sugar Influenza Oligomer Dextran Hydrazine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Landsteiner. (1900). Zent. Bakteriol Parasitenk 27:361.Google Scholar
  2. 2.
    K. Landsteiner, K. (1901). Wein. Klin. Woch-Scr. 14:1132.Google Scholar
  3. 3.
    A. von Decastello, A. Sturli. (1902). Munch. Med. Wochschr. 49:1090.Google Scholar
  4. 4.
    F. Schiff, L.Z. Adelsberger. (1924). Blood group specific antibodies and antigens. Z. Immunitatsforsch. 19:115.Google Scholar
  5. 5.
    S. Hesser. (1924). Does Moss’ grouping of human blood with respect to isoagglutinins apply also to isohemolysins? Serological studies with human red corpuscles. Acta. Med. Scand. Suppl. 9.Google Scholar
  6. 6.
    K. Landsteiner, J. van der Scheer, D.H. Whitt. (1924). Specificity of agglutinins and precipitins. Proc. Soc. Exptl. Biol. Med. 22:289.Google Scholar
  7. 7.
    K. Landsteirier, J. van der Scheer. (1925). Antigens of red corpuscles. II. Flocculation reaction with alcoholic extractions of erythrocytes. J. Exptl. Med. 42:123.CrossRefGoogle Scholar
  8. 8.
    H. Masamune, H. Hirata. (1952). Chemistry and biology of lipides (IX group lipide from hog lung). Tohoku J. Exptl. Med. 55:233–241.Google Scholar
  9. 9.
    H. Masamune, M. Tokura, R. Satoh. (1952). Chemistry and biology of lipides (XIII group lipide of pig pancreas). Tohoku J. Exptl. Med. 57:2.Google Scholar
  10. 10.
    M. Tokura. (1952). Lipides (XI) Group A lipide (XII) Group B lipide (XIV) Group lipoid of stomach mucosa. Tohoku J. Exptl. Med. 56:299–307.Google Scholar
  11. 11.
    T. Yamakawa, T. Iida. (1953). Immunochemical study of red blood cells. Japan J. Exptl. Med. 23:327.Google Scholar
  12. 12.
    T. Yamakawa, S. Suzuki. (1952). Lipides of posthemolytic residue on stroma of erythrocytes. J. Biochem. 39:393.Google Scholar
  13. 13.
    S.-I. Hakomori, (1978). Biosynthesis of glycolipidis in normal RK line cells. Methods Enzymol. 50:207–211.PubMedCrossRefGoogle Scholar
  14. 14.
    E. A. Kabat. (1956). Blood Group Substances, Academic PressGoogle Scholar
  15. 16.
    A.V. Stepanov, A. Kuzin, Z. Makaeva? P.N. Kosyakov. (1940). Specific polysaccharides of blood. Biokhimiya 5:547.Google Scholar
  16. 17.
    J. Koscielak, H. Miller-Podraza, E. Zdebska. (1978). Isolation of poly(glycosy1)ceramides with A, B, H, and I blood group activities. Methods Enzymol. 50:211–216.PubMedCrossRefGoogle Scholar
  17. 18.
    C. Howe. (1951). Influenza virus receptor and blood group ntigens of human erythrocyte stroma. J. Immuno1. 66:9. C. Howe. (unpublished data as reported in ref. 14)Google Scholar
  18. 19.
    W. M. Watkins, and W.T.J. Morgan. (1952). Neutraliza tion of the anti-H agglutinin in eel serum by simple sugars. Nature 169:852.CrossRefGoogle Scholar
  19. 20.
    W. T.J. Morgan, and W.M. Watkins. (1953). Inactivation of the H-receptor on human erythrocytes by an enzyme obtained from Trichomonas foetus. Brit. J. Exptl. Pathol. 34:94.Google Scholar
  20. 21.
    W. M. Watkins and W.T.J. Morgan. (1955). Inhibition by simple sugars of enzymes which decompose the blood- group substances. Nature 175:676.PubMedCrossRefGoogle Scholar
  21. 22.
    P. Pinto da Silva, S.D. Douglas, D. Branton. (1971). Localization of A antigen sites on human erythrocyte ghosts. Nature 232:194–196.PubMedCrossRefGoogle Scholar
  22. 23.
    S. I. Hakomori. (1970). Glycosphingipids having blood groups ABH and Lewis specificities. Chem. Phys. Lipids 5:96–115.PubMedCrossRefGoogle Scholar
  23. 24.
    S. I. Hakomori, G.D. Strycharz, (1968). Cellular blood group substances. I. Isolation and chemical composition of blood groups ABH and Leb isoantigens of sphingoglycolipid nature. Biochemistry 7:1279–1286.PubMedCrossRefGoogle Scholar
  24. 25.
    S. I. Hakomori. (1978). Isolation of blood groups ABH-active glycolipids from human erythrocyte membranes. Methods Enzymol. 50:207–211PubMedCrossRefGoogle Scholar
  25. 26.
    K. Watanabe, R.A. Laine, S.I. Hakomori. (1975). Glyco sph ingo 1 ip ids with blood groups A, H, and I activity: their status in group A1 and A2 erythrocytes and their changes associated with ontogeny and oncogeny. Biochemistry 14:2725–2733.PubMedCrossRefGoogle Scholar
  26. 27.
    S. I. Hakomori, B. Siddiqui. (1974). Isolation and character zation of glycosphingolipid from animal cells and their membranes. Methods Enzymol. 32:345–367.PubMedCrossRefGoogle Scholar
  27. 28.
    K. Stellner, K. Watanabe, S. Hakomori. (1973). Cellu lar blood-group substances. III. Isolation and characterization of glycosphingolipids with blood-group H specificity from membranes of human erythrocytes. Biochemistry 12:3047–3051.CrossRefGoogle Scholar
  28. 29.
    H. Clausen, E. Holmes, S. Hakomori. (1986). Novel blood group H glycolipid antigens exclusively expressed in blood group A and AB erythrocytes(type three chain H). Differential conversion of different H substances substrates by Al and A2 enzymes, and type 3 chair H expression in relation to secretor status. J. Biol. Chem. 261:1388–1392.PubMedGoogle Scholar
  29. 30.
    H. Clausen, S.B. Levery, R. Kannagi, S. Hakomori.(1986). Novel blood-group H glycolipid antigens exclusively expressed in blood-group A and AB erythrocytes (type 3 chain H) J. Biol. Chem.261:1380–1387.PubMedGoogle Scholar
  30. 31.
    H. B. Clausen, S.B. Levery, J.M. Mibbin, S. Hakomori.(1985). Repetitive A epitope (type 3 chain A) defined by blood group Al-specific monoclonal antibody TH-1: chemical basis of qualitative Al and A2 distinction. Bi ochemi stry 24: 3578–3586.Google Scholar
  31. 32.
    H. B. Clausen, K. Watanabe, R. Kannagi, S.B. Levery, E.Nudelman, Y. Arao-Tomomo, S. Hakomori. (1985) Blood group A glycolipid (Ax) with globo-series structure which is specific for blood group Al erythrocytes: one of the chemical bases for Al and A2 distinction. Biochem, Biophys. Res. Commun. 124:523–529.CrossRefGoogle Scholar
  32. 33.
    R. Kannagi, S.B. Levery, S. Hakomori. (1984). Hybrid type glycolipids (1acto-gang1 io series) with a novel branched structure. Their presence in undifferentiated murine leukemia cells and their dependence on differentiation. Blood group H antigen with globo- series structure. Isolation and character ization from human blood group 0 erythrocytes. FEBS Lett. 175:397–401.PubMedCrossRefGoogle Scholar
  33. 34.
    M. N. Fukuda, S. Hakomori. (1982). Structure of bran ched blood group A-active glycosphingolipids in human erythrocytes and polymorphism of A-and H-glycolipids in Al and A2 subgroups. J. Biol. Chem. 257:446–455.PubMedGoogle Scholar
  34. 35.
    S. Hakomori. (1981). Blood group ABH and I i antigens of human erythrocytes: chemistry, polymorphism, and their developmental change. Seimin. Hematol. 18:39–62.Google Scholar
  35. 36.
    M. E. Breimer, G.C. Hansson, K.A. Karlsson, and H. Leffler.(1980). Mass spectrometry of glycolipids fingerprinting of lipid-linked o 1igosaccarides by mass spectrometry. FEBS Lett. 114:51–56.PubMedCrossRefGoogle Scholar
  36. 37.
    M. E. Breimer, G.C. Hansson, K.A. Karlsson, and H.Leffler. (1978). Structure determination of blood group type glycolipids of cat small intestine by mass fragmentography. FEBS Lett. 124:299–303.CrossRefGoogle Scholar
  37. 38.
    M. E. Breimer, G.C. Hansson, K.A. Karlsson, and H.Leffler. (1981). Blood group type glycosphingo- lipids from the small intestine of different animalsanalyzed by mass spectrometry and thin-layer chromatography. A note on species diversity. J. Biochem. 90:589–609.PubMedGoogle Scholar
  38. 39.
    M. E. Breimer, K.A. Karlsson, B.E. Samuelsson. (1981). Characterization of a blood group H type pentaglyco- sylceramide of human pancreas based on a type 1 carbohydrate chain. J. Biol. Chem. 256:3810–3816.PubMedGoogle Scholar
  39. 40.
    M. E. Breimer, K.E. Falk, G.L. Hansson, K.A. Karlsson. (1982). Structural identification of two 10-sugar branched-chain glycosphingolipids of blood group H type present in epithelial cells of rat small intestine. J. Biol. Chem. 257:50–59.PubMedGoogle Scholar
  40. 41.
    M. E. Breimer, K.A. Karlsson, B.E. Samuelsson. (1982). Characterization of human intestinal difucosyl hepta- glycosyleeramide with a blood group B determinant and a type 1 carbohydrate chain. J. Biol. Chem. 257:1079–1085.PubMedGoogle Scholar
  41. 42.
    P. Hdnfland, M. Kordowicz, H. Niermann, H. Egge? U.Dabrowski, J. Peter-Katalinic, J. Dabrowski. (1984). Purification and structure of branched blood group type B active glycosphingolipids from human erythrocyte membranes. Eur. J. Biochem. 145:531–542.Google Scholar
  42. 43.
    J. Koscielak, H. Milller-Podraza, R. Krauze, A. Piasek. (1976). Isolation and characterization of poly(gly- cosyl)ceramides (megalogcolipids) with A, H, and I blood group activities. Eur. J. Biochem. 71:9–18.PubMedCrossRefGoogle Scholar
  43. 44.
    M. Dejter-Juszynski, N. Harpaz, H.M. Flowers, N. Sharon. (1978). Blood group ABH specific macroglycolipids of human erythrocytes: isolation in high yield from a crude membrane glycoprotein fraction. Eur. J. B i ochem. 83:363–373.Google Scholar
  44. 45.
    J. Jarnefelt, S.J. Rush, Y.T. Li, R.A. Laine. (1978). Erythroglycan, a high molecular weight glycopeptide with the repeating structure Cgalactosy1(l->4)-2- deoxy-2-acetamidoglucosy1(1->3)1 comprising more than one-third of the protein bound carbohydrate of human erythrocyte stroma. J. Biol. Chem. 253:8006–8009.PubMedGoogle Scholar
  45. 46.
    T. Krusius, J. Finne, H. Rauvala. (1978). The poly(gly- cosyl) chains of glycoproteins. The characterization of a novel type of glycoprotein saccharides from human erythrocyte membrane. Eur. J. Biochem. 92:289–300.PubMedCrossRefGoogle Scholar
  46. 47.
    Finne, T. Krusius, H. Rauvala, R. Kekomaki, G.Myllyla. (1978). Alkali-stable blood group A and B active poly(glycosyl) peptides from human erythrocyte membranes. FEBS Lett. 89:111–115.PubMedCrossRefGoogle Scholar
  47. 48.
    C. G. Gahmberg, G. Myllyla, J. Leikola, A. Pirkola, S. Nordling. (1976). Absence of the major sialogylco- protein in the membrane of human En(a-) erythrocythes and increased glycosylation of band 3. J. Biol. Chem. 251:6108–6116.PubMedGoogle Scholar
  48. 49.
    R. A. Childs, T. Feizi, M. Fukuda, S. Hakomori. (1978). Blood group I activity associated with band 3, the major intrinsic membrane protein of human erythrocytes. Biochem. J. 173:33–336Google Scholar
  49. 50.
    T. Feizi. (1981). The blood group Ii systems a carbo hydrate antigen system defined by naturally monoclonal or oligoclonal autoantibodies of man. Immunol. Comm. 10:127–156.Google Scholar
  50. 51.
    M. Fukuda, M.N. Fukuda, and S. Hakomori. (1979). Devel opmental change and genetic defect in the carbohydrate structure of band 3 glycoprotein of human erythrocyte membrane. J. Biol. Chem. 254:3700–3703.PubMedGoogle Scholar
  51. 52.
    P. Scudder, P. Hanfland, K. Uemura, T. Feizi. (1984).Endo-B-D-galactosidases of Bacteroides fragilis and Escherichia freundii hydrolyze linear but not branched oligosaccharide domains of glycolipids of the neolacto series. J. Biol. Chem. 259:6586–6592.PubMedGoogle Scholar
  52. 53.
    J. Rush (with R.A. Laine) (1981) Ph.D. Thesis; University of Kentucky-Medical, Dept. of Biochemistry, Lexington, KY.Google Scholar
  53. 54.
    T. L. Steck, J. Yu. (1973). Selective solublization of proteins from red blood cell membranes by protein perturbants. J. Supramol. Struct. 1:220–232.PubMedCrossRefGoogle Scholar
  54. 55.
    S. Grinstein, L. Mulloch, A. Rothstein. (1978). Trans membrane effects of irreversible inhibitors of anion transport in red blood cells. Evidence for mobile transport sites. J. Gen. Physiol. 73:493–514.CrossRefGoogle Scholar
  55. 56.
    J. Finne. (1980). Identification of the blood group ABH active glycoprotein components of human erythrocyte membrane. Eur. J. Biochem. 104:181–189.PubMedCrossRefGoogle Scholar
  56. 57.
    J. Viitala, K.K. Karhi, C.G. Gahmberg, J. Finne, J.Jarnefelt, G. Myllyla, T. Krusius. (1981). Blood group A and B determinants are located in different polyglycosyl peptides isolated from human erythrocytes of blood group AB. Eur. J. Biochem. 105:259–265.Google Scholar
  57. 58.
    G. Froman, P. Lundhal, F. Acevedo. (1981). The stereo-specific d-glucose transport protein in cholate extracts of human erythrocyte membranes. MolecularGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Roger A. Laine
    • 1
  • Jeffrey S. Rush
    • 2
  1. 1.Department of BiochemistryLouisiana State UniversityBaton RougeUSA
  2. 2.Department of BiochemistryUniversity of Kentucky-MedicalLexingtonUSA

Personalised recommendations