Advertisement

Antibody Combining Sites: How Much of the Antibody Repertoire are we Seeing? How does it Influence Our Understanding of the Structural and Genetic Basis of Antibody Complimentarity?

  • Elvin A. Kabat
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 228)

Abstract

Knowledge of monoclonal antibody combining sites and of their specificities and three dimensional structures has been obtained using a variety of materials and sources: These include (1) collections of monoclonal immunoglobulins of various classes from patients with multiple myeloma and Waldenstrom macroglobulinemia (Eisen et al., 1967; Seligmann and Brouet, 1973; Yoo and Franklin, 1971; Harboe et al., 1975; Freedman et al., 1976; Emmrich et al., 1985; Fink and Galanos, 1985), and cold idiopathic hemagglutinin disease (Williams, 1971; Feizi and Kabat, 1972; Roeleke, 1974), and from BALB/c (Potter, 1971, 1977; Cohn, 1967)or NZB mice (Warner, 1975) injected with paraffin oil; (2) from infrequent mono- or pauciclonal antipolysaccharide responses in rabbits, most frequently to immunization with bacterial vaccines(Osterland et al., 1966; Krause, 1970; Braun et al., 1969; Haber et al., 1975); (3) in humans immunized with various polysaccharides, notably dextrans and levans(Yount et al., 1968); and most recently (4) to almost any antigen in mice by the hybridoma technique(Kohler and Milstein, 1975). The first of these sources provides no intrinsic information as to the specificity of the monoclonal immunoglobulin produced and only in a small proportion of the human and a somewhat larger proportion of the mouse myeloma proteins and macroglobulins have antibody activities been identified.

Keywords

Light Chain Antigenic Determinant Mini Gene Immunochemical Study Myeloma Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, F. and Baltimore, D. (1982). Joining of immunoglobulin heavy chain gene segments: Implications from a chromosome with evidence of three D-JHfusions. Proc. Natl. Acad. Sci. 79:4118–4122.PubMedGoogle Scholar
  2. Amit, A.G., Boulot, G., Comarmond, M.B., Harper, M., Mariuzza, R.A., Phillips, S.E., Saludjian, P., Saul, F.A., Conger, J.D. and Nisonoff, A. (1985). X-Ray diffraction studies of an anti-azophenylarsonate antibody and of an antigen-antibody complex. Ann. Inst. Pasteur Immunol. 136:121–129.Google Scholar
  3. Amit, A.G., Mariuzza, R.A., Phillips, S.E.V. and Poljak, R.J. (1984). Three-dimensional structure of an antigen- antibody complex at 6 Å resolution. Nature 313:156–158.Google Scholar
  4. Amzel, L.M., Poljak, R.J., Saul, F., Varga, J.M. and Richards, F.F. (1974). The three-dimensional structure of a combining region-ligand complex of immunoglobulin New at 3.5 Å resolution. Proc. Nat. Acad. Sci. 71:1427–1430.PubMedGoogle Scholar
  5. Anglister, J., Frey, T. and Monnell, H.M. (1985). NMR technique for assessing contributions of heavy and lightchains to an antibody combining site. Nature 315:65–67.PubMedGoogle Scholar
  6. Arakatsu, Y., Ashwell, G. and Rabat, E.A. (1966).Immunochemical studies on Dextrans. V. Specificity and cross-reactivity with dextrans of the antibodies formed in rabbits to isomaltonic and isomaltotrionic acids coupled to bovine serum albumin. J. Immunol. 97:858–866.PubMedGoogle Scholar
  7. Arnon, R. (1977). Immunochemistry of lysozyme. in: “Immunochemist ry of enzymes and their antibodies”. Salton, M.R.J., ed. New York: Wiley p. 1–28.Google Scholar
  8. Atassi, M.Z. (1975). Antigenic struture of myoglobin: The complete immunochemical anatomy of a protein and conclusions relating to antigenic strutures of proteins. Immunochemistry 12:423–438.PubMedGoogle Scholar
  9. Azuma, T., Igras, V., Reilly, E.B. and Eisen, H.N. (1984). Diversity at the variable-joining region boundary ofλ light chains has a pronounced effect on immunoglobulin ligand-binding activity. Proc. Natl. Acad. Sci. 81:6139–6143.PubMedGoogle Scholar
  10. Baltimore, D. (1981a.). Somatic mutation gains its place among the generators of diversity. Cell 26:295–296.PubMedGoogle Scholar
  11. Baltimore, D. (1981b.). Gene conversion; Some implications for immunoglobulin genes. Cell 24:592–594.PubMedGoogle Scholar
  12. Baltimore, D. and Loh, D.Y. (1983). Evolution of heavy-chain variable-gene segments. Prog, in Immunology 5:115–121.Google Scholar
  13. Becker, J.W. and Reeke, G.N. (1985). Three-dimensional structure of β2-microglobulin. Proc. Natl. Acad. Sci. 82:4225–4229.PubMedGoogle Scholar
  14. Benjamin, D.C., Berzofsky, J.A., East, I.J., Gurd, F.R.N., Hannum, C., Leach, S.J., Margoliash, E., Michael, J.G., Miller, A., Prager, E.M., Reichlin, M., Sercarz, E. E., Smith-Gill, S.J., Todd, P.E. and Wilson, A.C. (1984). The antigenic structure of proteins. A reappraisal. Ann. Rev. Immunol. 2:67–101.Google Scholar
  15. Berek, C., Griffiths, G.M. and Milstein, C. (1985). Molecular events during maturation of the immune response to oxazolone. Nature 316.: 412–418.PubMedGoogle Scholar
  16. Bernstein, K.E., Reddy, E.P., Alexander, C.B. and Mage, R.G. (1982). A NA sequence encoding a rabbit heavy chain variable region of the VHa2 allotype showing homologies with human heavy chain sequences. Nature 300:74–76.PubMedGoogle Scholar
  17. Berzofsky, J.A. (1985). Intrinsic and extrinsic factors in protein antigenic structure. Science 229:932–940.PubMedGoogle Scholar
  18. Bhattachargee, A.K., Das, M.K., Roy, A. and Glaudemans, C.P.J. (1981). The binding sites of the two monoclonal immunoglobulins as J539 and W3129. Thermodynamic mapping of a groove- and a cavity-type immunoglobulin, both having antipolysaccharide specificity. Mol. Immunol. 18:230–277.Google Scholar
  19. Boersch-Supan, M.E., Agarwal, S., White-Scharf, M.E. and Imanishi-Kari, T. (1985). Heavy chain variable region. Multiple gene segments encode anti-4-(hydroxy-3-nitrophenyl)acetyl idiotypic antibodies. J. Exp. Med. 161:1272–1292.PubMedGoogle Scholar
  20. Bothwell, A.L.M., Paskind, M., Reth, M., Imanishi-Kari, T., Rajewsky, K. and Baltimore, D. (1981). Heavy chain variable region contribution to the NPbfamily of antibodies: Somatic mutations evident in a λ2a variable region. Cell 24:625–637.PubMedGoogle Scholar
  21. Bothwell, A.L.M. (1984). The genes encoding anti-NP antibodies in inbred strains of mice. in: “The Biology of Idiotypes”. M.I. Greene and A. Nisonoff, eds. Plenum Publishing Corp. p. 19–34.Google Scholar
  22. Braun, D.G., Eichmann, K. and Krause, R.M. (1969). Rabbit antibodies to streptococcal carbohydrates. Influence of primary and secondary immunization and possible genetic factors on the antibody response. J. Exp. Med. 129:809–830.PubMedGoogle Scholar
  23. Brodeur and Riblet (1984). The immunoglobulin heavy chain variable region (Igh-V) locus in the mouse I. One hundred Igh-V genes comprise seven families of homologous genes. Eur. J. Immunol. 14:922–930.Google Scholar
  24. Capra, J.D., Slaughter, C., Milner, E.C.B., Estess, P. and Tucker, P.W. (1982). The cross reactive idiotype of A-strain mice. Serological and structural analysis. Immunology Today 3.: 332–339.Google Scholar
  25. Cesari, I.M. and Weigert, M. (1973). Mouse lambda-chain sequences. Proc. Natl. Acad. Sci. 70:2112–2116.PubMedGoogle Scholar
  26. Chang, C., Short, M.T., Westholm, F.A., Stevens, F.J., Wang, B., Furey, W., Solomon, A. and Schiffer, M. (1985). A novel arrangement of immunoglobulin variable domains: X-ray crystallographic analysis of the λ chain dimer, Bence-Jones protein Loc. Biochemistry 24:4890–4897.PubMedGoogle Scholar
  27. Chen, H. and Rabat, E.A. (1985). Immunochemical studies on blood groups LXXIII: The combining site specificities of mouse monoclonal hybridomas anti-A and anti-B. J. Biol. Chem. 260:13208–13217.PubMedGoogle Scholar
  28. Chen, P.P., Rabat, E.A., Wu, T.T., Fong, S. and Carson, D.A. (1985). Possible involvement of human D minigenes in the first complementarity-determining region of klight chains. Proc. Natl. Acad. Sci. 82:2125–2127.PubMedGoogle Scholar
  29. Cisar, J., Rabat, E.A., Dorner, M. and Liao, J. (1975). Binding properties of immunoglobulin combining sites specific for terminal or non-terminal antigenic determinants in dextran. J. Exp. Med. 142:435–459.PubMedGoogle Scholar
  30. Clarke, S.H., Hiippi, R., Ruezinsky, D., Staudt, L., Gerhard, W. and Weigert, M. (1985). Inter- and intraclonal diversity in the antibody response to influenza hemagglutinin. J. Exp. Med. 161:687–704.PubMedGoogle Scholar
  31. Clarke, S.H. and Rudikoff, S. (1984). Evidence for gene conversion among immunoglobulin heavy chain variable region genes. J. Exp. Med. 159:773–782.PubMedGoogle Scholar
  32. Clevinger, B., Schilling, J., Hood, L. and Davie, J.M. (1980). Structural correlates of cross-reactive and individual idiotypic determinants on murine antibodies to α-(l->3) dextran. J. Exp. Med. 151:1059–1070.PubMedGoogle Scholar
  33. Cohn, M. (1967). Natural history of the myeloma. Cold Spring Harbor Symposia on Quantitative Biol. 32: 211–222.Google Scholar
  34. Cohn, M., Blomberg, B., Geckeler, W., Raschke, W., Riblet, R. and Weigert, M. (1974). First order considerations in analyzing the generator of diversity. in: “The Immune System: Genes, Receptors, Signals”. in: ICN-UCLA Symposium on Molecular Biology. Acad. Press. New York pp.89–117.Google Scholar
  35. Coleman, P.M., Varghese, J.N., Laver, W.G. (1983). Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303:41–44.Google Scholar
  36. Crumpton, M.J. (1974). Protein antigens: The molecular bases of antigenicity and immunogenicity. in: “The Antigens”, Sela, M. ed. Academic New York: II:1–78.Google Scholar
  37. Cumano, A. and Rajewsky, R. (1985). Structure of primary anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibodies in normal and idiotypically suppressed C57BL/6 mice. Eur. J. Immunol. 15.: 512–520.PubMedGoogle Scholar
  38. Darsley, M.J. and Rees, A.R. (1985). Nucleotide sequences of five anti-lysozyme monoclonal antibodies. EMBO J. 4:393–398.PubMedGoogle Scholar
  39. Davies, D.R. and Metzger, H. (1983). Structural basis of antibody function. Ann. Rev. Immunol. 1:87–117.Google Scholar
  40. Davies, D. R.,Padlan, E. A. and Segal, D.M. (1975). Three- dimensional structures of immunoglobulins. Ann. Rev. Biochem. 44:639–667.PubMedGoogle Scholar
  41. Desiderio, S.V., Yancopoulos, G.D., Paskind, M., Thomas, E., Boss, M.A., Landau, N., Alt, F.W. and Baltimore, D. (1984). Insertion of N regions into heavy-chain genes iscorrelated with expression of terminal deoxytransferase in B cells. Nature 211:752–755.Google Scholar
  42. D’Hoostelaere, L. and Potter, M. (1982). Genetics of the αl,6-dextran response: Expression of the QUPC idiotype in different inbred and congenic strains of mice. J. Immunol. 128:492–497.PubMedGoogle Scholar
  43. Diamond, B. and Scharff, M.D. (1984). Somatic mutation of the T15 heavy chain gives rise to an antibody with autoantibody specificity. Proc. Natl. Acad. Sci. 81:5841–5844.PubMedGoogle Scholar
  44. Dighiero, G., Lymberi, P., Holmberg, D., Lundquist, I., Coutinho, A. and Avrameas, S. (1985). High frequency of natural autoantibodies in normal newborn mice, J. Immunol. 134: 765–771.PubMedGoogle Scholar
  45. Dildrop, R. (1984). A new classification of mouse VHsequences. Immunology Today 5: 85–86.Google Scholar
  46. Dildrop, R., Bovens, J., Siekevitz, M., Rajewsky, K. and Beyreuther, K. 1982).Immunoglobulin V-region variants in hybridoma cells II. Recombination between genes. EMBO J. 1:635–640.PubMedGoogle Scholar
  47. Doyen, N., Lapresle, C., Lafaye, P. and Mazie, J.C. (1985). Study of the antigenic structure of human serum albumin with monoclonal antibodies. Mol. Immnol. 22.: 1–10.Google Scholar
  48. Early, P., Huang, H., Davis, M., Calame, K. and Hood, L. (1980). An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D, and JH. Cell 19:981–992.PubMedGoogle Scholar
  49. Edelman, G.M. (1970). The covalent structure of a human - immunoglobulin XI. Functional implications. Biochemistry 2.:3197–3205.Google Scholar
  50. Edelman, G.M., Cunningham, B.A., Gall, W.E. Gottlieb, P.D., Rutishauser, V. and Waxdal, M.J. (1968). The covalent structure of an entire immunoglobulin molecule. Proc. Natl. Acad. Sci. 63:78–85.Google Scholar
  51. Edmundson, A.B., Ely, K.R., Girling, R.L., Abola, E.E., Schiffer, M., Westholm, F.A., Fausch, M.D. and Deutsch, H.F. (1974). Binding of 2,4-dinitrophenyl compounds and other small molecules to a crystalline?i-type Bence-Jones dimer. Biochem. 13:3816–3827.Google Scholar
  52. Edmundson, A.B., Ely, K.R. and Herron, J.N. (1984). A search for site-filling ligands in the Meg Bence-Jones dimer: Crystal binding studies of fluorescent compounds. Mol. Immunol. 21:561–576.PubMedGoogle Scholar
  53. Egel, R. (1981). Intergenic conversion and reiterated genes. Nature 210:191–192.Google Scholar
  54. Eilat, D., Hochberg, M., Pumphrey, J. and Rudikoff, S. (1984). Monoclonal antibodies to DNA and RNA from NZB/NZW F1mice: Antigenic specificities and NH2terminal amino acid sequences. J. Immunol. 133:489–494.PubMedGoogle Scholar
  55. Eisen, H.N., Little, J.R., Osterland, C.K. and Simms, E.S. (1967). Cold Spring Harbor Symposia Quant. Biol. 32:75–81.Google Scholar
  56. Eisen, H.N. and Reilly, E.B. (1985). Lambda chains and genes in inbred mice. Ann. Rev. Immunol. 3:337–365.Google Scholar
  57. Ely, R.R., Peabody, D.S., Holm, T.R., Cheson, B.D. and Edmundson, A.B. (1985a). Accessible intrachain disulfide bonds in hybrids of light chains. Mol. Immunol. 22:85–92.PubMedGoogle Scholar
  58. Ely, K.R., Wood, M.K., Rajan, S.S., Hodsdon, J.M., Abola, E.E., Deutsch, H.F. and Edmundson, A. B. (1985b). Unexpected similarities in the crystal structures of the Meg light-chain dimer and its hybrid with the Weir protein. Mol. Immunol. 22:93–100.PubMedGoogle Scholar
  59. Emmrich, F., Bundle, D., Zee, J., Out, T., Zenke, G. and Eichmann, K. (1985). Two human I myeloma proteins with unusual specificities for streptococcal carbohydrate- associated epitopes. Scand. J. Immunol. 21:119–126.PubMedGoogle Scholar
  60. Fan, S.T. and Karush, F. (1984). Restriction I expression- -VI. Affinity analysis of monoclonal anti-dansyl antibodies Mol. Immunol. 21:1023–1029.Google Scholar
  61. Fazekas de St Groth, S. and Webster, R.G. (1966). Disquisitions on original antigenic sin. I. Evidence in Man; II. Proof in lower vertebrates. J. Exp. Med. 124:331–345;347–361.PubMedGoogle Scholar
  62. Feizi, T., Rabat, E.A., Vicari, G., Anderson, B. and Marsh, W.L. (1971). Immunochemical studies on blood groups XLIX. The I antigen complex: Specificity differences among anti-I sera revealed by quantitative precipitin studies; Partial structure of the I determinant specific for one anti-I serum. J. Immunol. 106:1578–1592.PubMedGoogle Scholar
  63. Fink, P.C. and Galanos, C. (1985). Serum anti-lipid A antibodies in multiple myeloma and Waldenstrom’s macroglobulinaemia. Immunol. 169:-.1–10.Google Scholar
  64. Finne, J., Leinonen, M. and Mäkelä, P.H. (1983). Antigenic similarities between brain components and bacteria causing meningitis. The Lancet pp. 355–357.Google Scholar
  65. Firca, J.R., Ely, R.R., Rremser, P., Westholm, F.A., Dorrington, R.J. and Edmundson, A.B. (1978).Interconversion of conformational isomers of light chains in the Meg immunoglobulins. Biochemistry 12:148–158Google Scholar
  66. Fougereau, M., Corbet, S., Oilier, P., Rocca-Serra, J., Roth, C., Schiff, C., Somme, G., Theze, J. and Tonnelle, C. (1985). The internal image and the structural idiotypic network (Abl, Ab2, Ab3) in the GAT system. Ann. Inst. Pasteur/Immunol. 136:143–156.Google Scholar
  67. Freedman, M., Merrett, R. and Pruzanski, W. (1976). Human monoclonal immunoglobulins with antibody-like activity. Immunochemistry 13:193–202.PubMedGoogle Scholar
  68. Gibson, A.L., Herron, J.N., Ballard, D.W., Voss, E.W., He, X.M., Patrick, V.A. and Edmundson, A.B. (1985). Crystallographic characterization of the Fab fragment of a monoclonal anti-ss-DNA antibody. Mol. Immunol. 22:499–502.PubMedGoogle Scholar
  69. Gibson, D.M. (1984). Evidence for 65 electrophoretically distinct groups of light chains in BALB/c and NZB myelomas. Mol. Immunol. 21:421–432.PubMedGoogle Scholar
  70. Glaudemans, C.P.J. and Rovac, P. (1985). Probing thecombining site of monoclonal I J539 using deoxyfluoro- and other galactosides as ligands. Mol. Immunol. 22: 651–653.PubMedGoogle Scholar
  71. Gooi, H.C., Hounsell, E.F., Picard, J.R., Lowe, A., Voak, D., Lennox, E. and Feizi, T. (1985). J. Biol. Chem. 260:13218–13224.PubMedGoogle Scholar
  72. Gough, N. (1982). Gene conversion and the generation of antibody diversity. TIBS. 7:307–308.Google Scholar
  73. Greenspan, N.S. and Davie, J.M. (1985). Serologic and topographic characterization of idiotopes on murine monoclonal anti-streptococcal group A carbohydrate antibodies. J. Immunol. 124:1065–1072.Google Scholar
  74. Griffiths, G.M., Berek, C., Kaartinen, M. and Milstein, C. Somatic mutation and the maturation of immune response to 2-phenyl oxazolone. Nature 312:271–275.Google Scholar
  75. Haber, E., Margolies, M., Cannon, L.E. and Rosemblatt, M.S. (1975). Restricted clonal responses: A tool in understanding antibody specificity. Miami Winter Symposium 1:303–338.Google Scholar
  76. Harboe, M., Deveril, J. and Eriksen, J. (1975). Capsular swelling and passive haemagglutination induced by monoclonal I reactiong with acid polysaccharides with Klebsiella. Acta Pathol. Microbiol. Immunol. Scand. Sect. C. Immunol. 83:97–105.Google Scholar
  77. Hartman, A.B. and Rudikoff, S. (1984). VH genes encoding the immune response to B- (l->6)-galactan: somatic mutation in I molecules. EMBO J. 12:3023–3030.Google Scholar
  78. Hedrick, S.M., Nielsen, E.A., Kavaler, J., Cohen, D.I. and Davis, M.M. (1984). Sequence relationships between putative T-cell receptor polypeptides and immunoglobulins. Nature 202:153–157.Google Scholar
  79. Holmberg, D., Wennerström, G., Andrade, L. and Coutinho, A. The high idiotypic connectivity of “natural” newborn antibodies is not found in adult mitogen-reactive B cell repertoires. Ann. Immunol. (Inst. Pasteur) (in press).Google Scholar
  80. Jaenichen, H., Pech, M., Lindenmaier, W., Wildgruber, N. and Zachau, H.G. (1984). Composite human VK genes and a model of their evolution. Nucl. Acids Res. 12:5249–5263.PubMedGoogle Scholar
  81. Jerne, N.K. (1974). Towards a network theory of the immune system. Ann. Immunol. (Inst. Pasteur) 125.: 373–389.Google Scholar
  82. Jerne, N.K., Roland, J. and Czzaenave, P.A. (1982). Recurrent idiotopes and internal images. EMBO J. 1:243–247.PubMedGoogle Scholar
  83. Jeske, D.J., Jarvis, J., Milstein, C. and Capra, D. (1984). Junctional diversity is essential to antibody activity. J. Immunol. 122:1090–1092.Google Scholar
  84. Johnson, N., Slankard, J., Paul, L. and Hood, L. (1982). The complete V domain amino acid sequences of two myeloma inulin-binding proteins. J. Immunol. 128:302–307.PubMedGoogle Scholar
  85. Kaartinen, M., Griffiths, G.M., Markham, A.F. and Milstein, C. (1983). NA sequences define an unusually restricted I response to 2-phenyloxazolone and its early diversification. Nature 304:320–324.PubMedGoogle Scholar
  86. Kabat, E. A. (1976). Structural Concepts in Immunology and Immunochemistry. 2nd Edition. Holt Rinehart and Winston. New York.Google Scholar
  87. Kabat, E. A. (1978). The structural basis of antibody complementarity. Adv. in Protein Chemistry, Academic Press, New York 32:l-75.Google Scholar
  88. Kabat, E. A. (1980). Opinion. Antibodies, hypervariable regions and minigenes. J. Immunol. 125:951–969.Google Scholar
  89. Kabat, E.A. (1982). Antibody diversity versus antibody complementarity. Pharmacological Rev. 24.: 23–38.Google Scholar
  90. Kabat, E. A. (1983). The antibody combining site. Fifth International Congress. Immunology Academic Press. Vpp. 67–85.Google Scholar
  91. Kabat, E. A. (1984). Idiotypic determinants, minigenes and the antibody combining site. in: “The Biology of Idiotypes,” M.I. Greene and A. Nisonoff, eds. Plenum Publishing Corporation, New York, pp, 3–17.Google Scholar
  92. Kabat, E.A. (1986). Antibody combining sites - Past, Present and Future. 9th International Subcellular Methodology Forum. Guildford, Surrey U.K. Sept. 3–6, 1984. in press.Google Scholar
  93. Kabat, E.A., Liao, J., Bretting, H., Franklin, E.C., Geltner, D., Frangione, B., Roshland, M.E., Shyong, J. and Osserman, E.F. (1980). Human monoclonal macroglobulins with specificity for KlebsiellaR polysaccharides that contain 3,4-pyruvylated-D-galactose and 4,6-pyruvylated-D- galactose. J. Exp. Med. 152:979–995.PubMedGoogle Scholar
  94. Kabat, E.A., Liao, J.,Sherman, W.H. and Osserman, E.F. (1984). Immunochemical characterization of the specificities of two human monoclonal IgM’s reacting with chondroitin sulfates. Carbohydrate Res. 130:289–297.Google Scholar
  95. Kabat, E. A. and Wu, T.T. (1971). Attempts to locate complementarity-determining residues in the variable positions of light and heavy chains of immunoglobulins. in: “Immunoglobulins” S. Rochwa and H. G. Runkel, eds. Ann. N.Y. Acad. Sci., 190:382–393.Google Scholar
  96. Kabat, E. A., Wu, T.T. and Bilofsky, H. (1977). Unusual distributions of amino acids in complementarity-determining (hypervariable) segments of heavy and light chains of immunoglobulins and their possible roles in specificity of antibody-combining sites. J. Biol. Chem. 252:6609–6616.PubMedGoogle Scholar
  97. Kabat, E.A., Wu, T.T. and Bilofsky, H. (1978). Variable region genes for the immunoglobulin framework are assembled from small segments of DNA - A hypothesis. Proc. Natl. Acad. Sci. 75:2429–2433.PubMedGoogle Scholar
  98. Rabat, E.A., Wu, T.T. and Bilofsky, H. (1979). Evidence supporting somatic assembly of the DNA segments (minigenes), coding for the framework, and complementarity-determining segments of immunoglobulin variable regions. J. Exp. Med. 149:1299–1313.Google Scholar
  99. Kabat, E. A., Wu, T.T. and Bilofsky, H. (1980). Evidence indicating independent assortment of framework and complementarity-determining segments of the variable regions of rabbit light chains. Delineation of possible J minigene. J. Exp. Med. 152:72–84.Google Scholar
  100. Kabat, E.A., Wu, T.T., Bilofsky, H., Reid-Miller, M. and Perry, H. (1983). Sequences of proteins of immunological interest. Tabulation and analysis of amino acid andnucleic acid sequences of precursors, V-regions, C-regions, J-chain, β2-microglobulins, ma j o r histocompatibility antigens, Thy-1, complement, C-reactive protein, thymopoiet in, post-gamma globulin, and (α2-macroglobulin. U.S. Dept. Health and Human Services, Public Health Service, National Institutes of Health, Bethesda, MD.Google Scholar
  101. Kobzik, L., Brown, M.C. and Cooper, A.G. (1976). Demonstration of an idiotypic antigen on a monoclonal cold agglutinin and on its isolated heavy and light chains. Proc. Natl. Acad. Sci. 23:1702–1706.Google Scholar
  102. köhler, G. and Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 256:495–497.PubMedGoogle Scholar
  103. Komaromy, M. and Wall, R. (1981). Organization of light chain variable region genes. in: “Immunoglobulin idiotypes” ICN-UCLA Symposia on Molecular and Cellular Biology. 20.:59–64.Google Scholar
  104. Krause, R.M. (1970). The search for antibodies with molecular uniformity. Adv. Immunol. 12:1–56.PubMedGoogle Scholar
  105. Kurosawa, Y. and Tonegawa, S. (1982). Organization, structure, and assembly of immunoglobulin heavy chain diversity DNA segments. J. Exp. Med. 155:201–218.PubMedGoogle Scholar
  106. Lai, E. and Kabat, E. A. (1985). Immunochemical studies of conjugates of isomaltosyl oligosaccharides to lipid: Production and characterization of mouse hybridoma antibodies specific for stearyl-isomaltosyl oligosaccharides. Mol. Immunol. 22.: 1021–1037.PubMedGoogle Scholar
  107. Lemieux, R.U., Wong, T.C., Liao, E. and Kabat, E. A. (1984). The combining site of anti-I Ma (Group 1). Mol. Immunol. 21:751–759.PubMedGoogle Scholar
  108. Lerner, R.A. (1982). Tapping the immunological repertiore to produce antibodies of predetermined specificity. Nature 299.: 592–596.Google Scholar
  109. Littman, D.R., Thomas, Y., Maddon, P.J., Chess, L. and Axel, R. (1985). The isolation and sequence of the gene encoding T8: A molecule defining functional classes of T lymphocytes. Cell 40: 237–246.PubMedGoogle Scholar
  110. Loh, D.Y., Bothwell, A.L.M., White-Scharf, M.E., Imanishi- Kari, T. and Baltimore, D. (1983). Molecular basis of a mouse strain-specific anti-Hapten response. Cell 22:85–93.Google Scholar
  111. Maddon, P.J., Littman, D.R., Godfrey, M., Maddon, D.E., Chess, L. and Axel, R. (1985). The isolation and nucleotide sequence of a NA encoding the T cell surface protein T4: A new member of the immunoglobulin gene family. Cell 42:93–104.PubMedGoogle Scholar
  112. Makover, S.D., Chen, H.C. and Kabat, E.A. in preparation.Google Scholar
  113. Mandrell, R.E. and Zollinger, W.D. (1982). Measurement of antibodies to meningococcal group B polysaccharide: Low avidity binding and equilibrium binding constants. J. Immunol. 121:2172–2178.Google Scholar
  114. Manser, T., Huang, S.Y. and Gefter, M. Influence of clonal selection on the expression of immunoglobulin variable region genes. Science 226:1283–1288.Google Scholar
  115. Max, E.E., Seideman, J.G. and Leder, P. (1979). Sequences at the somatic recombination sites of immunoglobulin kconstant region gene. Proc. Natl. Acad. Sci. 76.: 3450–3454.PubMedGoogle Scholar
  116. Milstein, C. (1985). From the structure of antibodies to the diversification of the immune response. EMBO J. 4: 1083–1092.PubMedGoogle Scholar
  117. Möller, G. (1984). T Cell Receptors and Genes. Immunol. Rev. 81:21–258.Google Scholar
  118. Moudallal, Z., Briand, J.P. and Van Regenmortel, M.H.V. (1985). A major part of the polypeptide chain of tobacco mosaic virus protein is antigenic. EMBO J. 4.: 1231–1235.PubMedGoogle Scholar
  119. Nairn, A.C., Detre, J.A., Casnellie, J.E. and Greengard, P. (1982). Serum antibodies that distinguish between the phospho-and dephospho-forms of a phosphoprotein. Nature 299:734–736.PubMedGoogle Scholar
  120. Naparstek, Y., Duggan, D., Schattner, A., Madaio, M.P., Goni, F., Frangione, B., Stoller, B.D., Kabat, E.A. and Schwartz, R.S. (1985). Immunochemical similarities between monoclonal anti-bacterial Waldenstrom’s macroglobulins and monoclonal anti-DNA lupus autoantibodies. J. Exp. Med. 161:1525–1538.PubMedGoogle Scholar
  121. Newman, B. A. and Kabat, E. A. (1985). An immunochemical study of the combining site specificities of C57BL/6J monoclonal antibodies to a (l->6)-linked dextran B512. J. Immunol. 125.: 1220–1231.Google Scholar
  122. Newman, B.A., Liao, J., Gruezo, F., Sugii, S., Kabat, E.A., Torii, M., Clevinger, B.L., Davie, J.M., Schilling, J., Bond, M. and Hood, L. (1986). Immunochemical studies of mouse monoclonal antibodies to dextran B1355S II. Combining site specificity, sequence, idiotype and affinity. Mol. Immunol. (in press).Google Scholar
  123. Newman, B., Sugii, S., Kabat, E.A., Torii, M., Clevinger, B.L., Schilling, J., Davie, J.M. and Hood, L. (1983). Combining site specificities of mouse hybridoma antibodies to dextran B1355. J. Exp. Med. 157:130–140.PubMedGoogle Scholar
  124. Novotny, J., Bruccoleri, R. and Karplus, M. (1984). An analysis of incorrectly folded protein models. J. Mol. Biol. 177:787–818.PubMedGoogle Scholar
  125. Novotny, J., Bruccoleri, R., Newell, J., Murphy, D., Haber, E. and Karplus, M. (1983). Molecular anatomy of the antibody binding site. J. Biol. Chem. 22:14433–14437.Google Scholar
  126. Novotny, J. and Haber, E. (1985). Structural invariants of antigen binding: Comparison of immunoglobulin VL-VHand VL-VLdomain dimers. Proc. Natl. Acad. Sci. 82:4592–4596.PubMedGoogle Scholar
  127. Ohno, S., Matsunaga, T. and Lee, A.D. (1984). The invariably present tryptophan loop as the core of all divergent antigen-binding pockets. Scand. J. Immunol. 22:377–388.Google Scholar
  128. Ohno, S., Matsunaga, T. and Wallace, R.B. (1982). Identification of the 48-base-long primordial building block sequence of mouse immunoglobulin variable region genes. Proc. Natl. Acad. Sci. 79:1999–2002.PubMedGoogle Scholar
  129. Ohno, S., Mori, N. and Matsunaga, T. (1985). Antigen-binding specificities of antibodies are primarily determined by seven residues of VH. Proc. Natl. Acad. Sci. 82:2945–2949.PubMedGoogle Scholar
  130. Osterland, C.K., Miller, E.J., Karakawa, W.W. and Krause, R.M. (1966). Characteristics of streptococcal group-specific antibody isolated from hyperimmune rabbits. J. Exp. Med. 122:599–614.Google Scholar
  131. Outschoorn, I.M., Ashwell, G., Gruezo, F. and Kabat, E. A. (1974). Immunochemical studies on dextrans VIII. Specificity and cross-reactivity with dextrans of the antibodies formed in rabbits to isomaltohexaonic acid coupled to bovine serum albumin. J. Immunol. 113:896–903.PubMedGoogle Scholar
  132. Owen, J.A., Sigal, N.H. and Klinman, N.R. (1982). Heterogeneity of the BALB/c IgM anti-phosphorylcholine antibody response. Nature 295:347–348.PubMedGoogle Scholar
  133. Padlan, E.A. (1977). Structural basis for the specificity of antigen - antibody reactions and structural mechanisms for the diversification of antigen-binding specificities. Quart. Rev. Biophys. 10:35–65.Google Scholar
  134. Padlan, E.A., Cohen, G.H. and Davies, D.R. (1985). On the specificity of ant ibody/antigen interactions: Phosphocholine binding to MC603 and the correlation of three-dimensional structure and sequence data. Ann. Inst. Pasteur/Immunol. 136:271–276.Google Scholar
  135. Padlan, E.A., Segal, D.M., Spande, T.F., Davies, D.R., Rudikoff, S. and Potter, M. (1973). Structure at 4.5 A resolution of a phosphorylcholine-binding Fab. Nature (Lond.) New Biol. 142:165–167.Google Scholar
  136. Patten, P., Yokota, T., Rothbard, J., Chien, Y., Arai, K. and Davis, M.M. (1984). Structure, expression and divergence of T-cell. receptor B-chain variable regions. Nature 312:40–46.PubMedGoogle Scholar
  137. Pawlita, M., Mushinski, E., Feldmann, R.J. and Potter, M. (1981). A monoclonal antibody that defines an idiotope with two subsites in galactan-binding myeloma proteins. J. Exp. Med. 154:1946–1956.PubMedGoogle Scholar
  138. Peabody, D.S., Ely, K.R. and Edmundson, A. B. (1980). Obligatory hybridization of heterologous immunoglobulin light chains into covalently linked dimers. Biochem. 11:2827–2834.Google Scholar
  139. Perlmutter, R.M., Crews, S.T., Douglas, R., Sorensen, G., Johnson, N., Nivera, N., Gearhart, P.J. and Hood, L. (1984). The generation of diversity in phosphorylcholine- binding antibodies. Academic Press, New York. Advances in Immunology 35:1–37.PubMedGoogle Scholar
  140. Potter, M. (1977). Antigen-binding myeloma proteins of mice. Adv. Immunol. Academic Press. 25:141–211.Google Scholar
  141. Potter, M. (1971). Antigen-binding myeloma proteins in mice. Immunoglobulins Ann. N.Y. Acad. Sci. 190:306–321.PubMedGoogle Scholar
  142. Radbruch, A., Zaiss, S., Kappen, C., Brüggemann, Beyreuther, K. and Rajewsky, K. (1985). Drastic change in idiotypic but not antigen-binding specificity of an antibody by a single amino-acid substitution. Nature 315:506–508.PubMedGoogle Scholar
  143. Rao, A.S., Liao, J., Kabat, E.A., Osserman, E.F., Harboe, M. and Nimmich, W. (1984). Immunochemical studies on human monoclonal macroglobulins with specificities for 3,4- pyruvylated D-galactose and 4,6-pyruvalated D-glucose. J. Biol. Chem. 259:1018–1026PubMedGoogle Scholar
  144. Rechavi, G., Ram, D., Glazer, L., Zakut, R. and Givol, D. (1983). Evolutionary aspects of immunoglobulin VHgene subgroups. Proc. Natl. Acad. Sci. 80:855–859.PubMedGoogle Scholar
  145. Reichlin, M. and Eng, J. (1977). Identifying antigenic determinants on cytochrome c for B and T cells. in: “Immunobiology of proteins and peptides I.” M.Z. Atassi and A.B. Stavitsky, eds. Plenum, N.Y. pp. 5–18.Google Scholar
  146. Reth, M., Bothwell, A.L.M. and Rajewsky, K. (1981). Structural properties of the hapten binding site and of idiotypes in the NPbantibody family. In Immunoglobulin Idiotypes and Their Expression. C. Janeway, H. Wigzell and C.F. Fox, eds. (New York: Academic Press), pp.169–178.Google Scholar
  147. Reynaud, C., Anquez, V., Dahan, A. and Weill, J. (1985). A single rearrangement event generates most of the chicken immunoglobulin light chain diversity. Cell 40:283–291.PubMedGoogle Scholar
  148. Rocca-Serra, J., Tonnelle, C. and Fougereau, M. (1983). Two monoclonal antibodies against different antigens using the same VHgerm-line gene. Nature 304:353–355.PubMedGoogle Scholar
  149. Roelcke, D. (1974). Cold agglutination antibodies and antigens. Clin. Immunol. Immunopathol. 2.: 2 66–280.Google Scholar
  150. Roth, C., Rocca-Serra, J., Somme, G., Fougereau, M. and Theze, J. (1985). Gene repertoire of the anti-poly(Glu60Ala30Tyr10) (GAT) immune response: Comparison of VH, VK, and D regions used by anti-GAT antibodies and monoclonal antibodies produced after anti-idiotypic immunization. Proc. Natl. Acad. 82:4788–4792.Google Scholar
  151. Ruckel, E.R. and Schuerch, C. (1967). Chemical synthesis of a dextran model, poly-a-(l->6)-anhydro-D-glucopyranose. Biopolymers 5: 515–523.Google Scholar
  152. Rudikoff, S. (1983). Immunoglobulin structure-function correlates: Antigen binding and idiotypes. Contemporary Topics in Molecular Immunology 9: 169–209.PubMedGoogle Scholar
  153. Sakano, H., Hiippi, K., Heinrich, G. and Tonegawa, S. (1979). Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature 280:288–294.PubMedGoogle Scholar
  154. Sakano, H., Maki, R., Kurosawa, Y., Roeder, W. and Tonegawa, S. (1980). Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes. Nature (Lond.) 286:676–683.Google Scholar
  155. Saul, F. A. and Poljak, R.J. (1985). Three-dimensional structure and function of immunoglobulins. Ann. Inst. Pasteur/Immunol. 136:259–294.Google Scholar
  156. Schilling, J.B., Clevinger, B., Davie, J.M. and Hood, L. (1980). Amino acid sequence of homogeneous antibodies to dextran and DNA rearrangements in heavy chain V-region gene segments. Nature 283:35–40.PubMedGoogle Scholar
  157. Seligmann, M. and Brouet, J.C. (1973). Antibody activity of human myeloma globulins. Semin. Hematol. 10:163–177.PubMedGoogle Scholar
  158. Sharon, J., D’Hoostelaere, L., Potter, M., Kabat, E. A. and Morrison, S.L. (1982). A cross-reactive idiotype, QUPC52 Idx, present on most but not all anti-α (l->6) dextran- specific I and I hybridoma antibodies with combining sites of different sizes. J. Immunol. 128:498–500.PubMedGoogle Scholar
  159. Sharon, J., Kabat, E.A. and Morrison, S.L. (1982a). Immunochemical characterization of binding sites of hybridoma antibodies specific for α(l->6)-linked dextran. Mol. Immunol. 19:388–389.Google Scholar
  160. Sharon, J., Kabat, E.A. and Morrison, S.L. (1982b). Association constants of hybridoma antibodies specific for α (l-> 6)-linked dextran determined by affinity electrophoresis. Mol. Immunol. 19:389–397.PubMedGoogle Scholar
  161. Sharon, J., Kabat, E.A. and Morrison, S.L. (1981a). Studies on mouse hybridomas secreting I or I antibodies to α (1->6)-linked dextran. Mol. Immunol. 18: 831–846.PubMedGoogle Scholar
  162. Siebenlist, U., Ravetch, J.V., Korsmeyer, R.S., Waldmann, T. and Leder, P. (1981). Human immunoglobulin D segments encoded in tandem multigenic families. Nature 294:631–635.PubMedGoogle Scholar
  163. Sikder, S.K., Akolker, P.N., Kaladas, P.M., Morrison, S.L. and Kabat, E.A. (1985). Sequences of variable regions ofhybridoma antibodies to α (l->6) dextran in BALB/c and C57BL/6 mice. J. Immunol. 135:4215–4221.PubMedGoogle Scholar
  164. Silverton, E.W., Padlan, E.A., Davies, D.R., Smith-Gill, S. and Potter, M. (1984). Crystalline monoclonal antibody Fabs complexed to hen egg white lysozyme. J. Mol. Biol. 761–765.Google Scholar
  165. Slaughter, C.A. and Capra, J.D. (1983). Amino acid sequence diversity within the family of antibodies bearing the major anti-arsonate cross-reactive idiotype of the A strain mouse. J. Exp. Med. 158: 1615–1634.PubMedGoogle Scholar
  166. Smith, A.M. and Potter, M. (1975). A BALB/c mouse I myeloma protein that binds Salmonellaflagellar protein. J. Immunol. 114:1847–1850.PubMedGoogle Scholar
  167. Tainer, J.A., Getzoff, E.D., Alexander, H., Houghten, R.A., Olson, A.J. and Lerner, R.A. (1984). The reactivity of anti-peptide antibodies is a function of the atomic mobility of sites in a protein. Nature 312:127–133.PubMedGoogle Scholar
  168. Tainer, J.A., Getzoff, E.D., Paterson, Y., Olson, A.J. and Lerner, R. A. (1985). The atomic mobility component of protein antigenicity. Ann. Rev. Immunol. 3.: 501–535.Google Scholar
  169. Takahashi, N., Noma, T. and Honjo, T. (1984). Rearranged immunoglobulin VHpseudogene that deletes the second complementarity determining region. Proc. Natl. Acad. Sci. 81:5194–5198.PubMedGoogle Scholar
  170. Urbain, J., Wuilmart, C. and Cazenave, P.A. (1981). Idiotypic regulation in immune networks. Contempor. Topics Mol. Immunol. 8113–148.Google Scholar
  171. Victor, C., Bona, C. and Pernis, B. (1983). Idiotypes on B lymphocytes: Association with immunoglobulins. J. Immunol. 130:1819–1825.PubMedGoogle Scholar
  172. Warner, N.W. (1975). Autoimmunity and the pathogeneis of plasma cell tumor induction in NZB inbred and hybrid mice. Immunogenetics 2 :1–20.Google Scholar
  173. Watanabe, K, Hakomori, S., Childs, R.A. and Feizi, T. (1979). Characterization of a blood group I-active ganglioside. J. Biol. Chem. 254:3221–3228.PubMedGoogle Scholar
  174. Weigert, M., Cesari, I.M., Yonkovich, S.J. and Cohn, M. (1970). Variability in the lambda light chain sequences of mouse antibody. Nature 228:1045–1047.PubMedGoogle Scholar
  175. Weigert, M. and Riblet, R. (1976). Genetic control of antibody variable regions. Cold Spring Harbor Symp. Quant. Biol. 41:837–846.Google Scholar
  176. Westhof, E., Altschuh, D. Moras, D., Bloomer, A.C., Mondragon, A., Klug, A. and Van Regenmortel, M.H.V. (1984). Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature 311:123–126.PubMedGoogle Scholar
  177. Wiley, D.C., Wilson, I.A., Skehel, J.J. (1981). Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289:373–378.PubMedGoogle Scholar
  178. Williams, R.C. (1971). Cold agglutinins: Studies of primary structure, serologic activity and antigenic uniqueness, in: “Immunoglobulins.” S. Kochwa and H.G. Kunkel eds. Ann. N.Y. Acad. Sci. 190:330–341.Google Scholar
  179. Wood, C. and Kabat, E.A. (1981a). Immunochemical studies of conjugates of isomaltosyl oligosaccharides to lipid: Fractionation of rabbit antibodies to stearylisomaltosyl oligosaccharides and a study of their combining sites by a competitive binding assay. Arch. Biochem. 212:277–289.PubMedGoogle Scholar
  180. Wood, C. and Kabat, E.A. (1981b). Immunochemical studies on conjugates of isomaltosyl oligosaccharides to lipid. I. Antigenicity of the glycolipids and the production of specific antibodies in rabbits. J. Exp. Med. 154:432–449.PubMedGoogle Scholar
  181. Wood, E. and Feizi, T. (1979). Blood group I and i activities of straight chain and branched synthetic oligos accharides related to the precursors of the major blood group antigens. FEBS Letters 104:135–140.PubMedGoogle Scholar
  182. Wu, A.M., Kabat, E.A. and Weigert, M.G. (1978). Immunochemical studies on dextran-specific and levan- specific myeloma proteins from NZB mice. Carbohydrate Res. 66:113–124.Google Scholar
  183. Wu, T.T. and Kabat, E.A. (1970). An analysis of the sequences of the variable regions of Bence-Jones proteins and myeloma light chains and their implication for antibody complementarity. J. Exp. Med. 122:211–250.Google Scholar
  184. Wu, T.T. and Kabat, E.A. (1982). Fourteen nucleotides in the second complementarity-determining region of a human heavy-chain variable region gene are identical with a sequence in a human D minigene. Proc. Natl. Acad. Sci. 79:5031–5032.PubMedGoogle Scholar
  185. Wyle, F.A., Artenstein, M.S., Brandt, B.L., Tramont, E.C., Kasper, D.L., Altieri, P.L., Berman, S.L. and Lowenthal, J.P. (1972). Immunologic response of man to group B meningococcal polysaccharide vaccines. J. Infectious Diseases 123:514–522.Google Scholar
  186. Yanagi, Y., Yoshikai, Y., Leggett, K., Clark, S.P., Aleksander, I. and Mak, T.W. (1984). A human T cell- specific NA clone encodes a protein having extensive homology to immunoglobulin chains. Nature 308:145–149.PubMedGoogle Scholar
  187. Yoo, T.J. and Franklin, E.C. (1971). Lack of antibody activity in human myeloma globulins. J. Immunol. 107:365–367.PubMedGoogle Scholar
  188. Yount, W.J., Dorner, M.M., Kunkel, H.G. and Kabat, E. A. (1968). Studies on human antibodies. VI. Selective variations in subgroup composition and genetic markers. J. Exp. Med. 127:633–646.PubMedGoogle Scholar
  189. Zanetti, M., Liu, F.T., Rogers, J. and Katz, D.H. (1985). Heavy and light chain of a mouse monoclonal autoantibody express the same idiotype. J. Immunol. 125: 1245–1251.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Elvin A. Kabat
    • 1
    • 2
  1. 1.Departments of MicrobiologyHuman Genetics and Development College of Physicians and Surgeons Columbia UniversityNew YorkUSA
  2. 2.National Institute of Allergy and Infectious DiseasesBethsedaUSA

Personalised recommendations