Skip to main content

Biotechnology Applied to the Improvement of Underground Systems of Woody Plants

  • Chapter
Genetic Manipulation of Woody Plants

Part of the book series: Basic Life Sciences ((BLSC,volume 44))

Abstract

The optimal functioning of the root system of a plant and its most favorable association with the soil and the microorganisms of the rhizosphere are crucial to the growth and development of the whole plant. A variety of technical approaches directed toward improving the functioning of the underground systems of woody plants are available. Genetic manipulations, including root transformations using microbial vectors, may result in more effective root systems and better understanding of root development. Chemical treatments, including mineral nutrient additions, hormonal modifications, and soil amendments, result in improved plant development. The root system provides sites for complex and subtle microbial interactions. Optimization of host-microorganism associations managed for maximal productivity is a major mode for biotechnical improvement of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, P.H. (1985) Plant fungal symbiosis. Science 229:617.

    Article  PubMed  CAS  Google Scholar 

  2. Allen, O.N., and E.K. Allen (1981) The Leguminosae, University of Wisconsin Press, Madison, Wisconsin.

    Google Scholar 

  3. Atkinson, W.A., B.T. Bormann, and D.S. De Bell (1979) Crop rotation of Douglas fir and red alder: A preliminary biological and economic assessment. Bot. Gaz. 140(Suppl.):S102–S107.

    Article  Google Scholar 

  4. Baker, D.D. (1987) Relationships among pure cultured strains of Frankia based on host specificity. Physiol. Plant. 70:245–248.

    Article  Google Scholar 

  5. Baker, D., W. Newcomb, and J.G. Torrey (1980) Characterization of an ineffective actinorhizal microsymbiont, Frankia sp. EμI1 (Actinomycetales). Can. J. Microbiol. 26:1072–1089.

    Article  PubMed  CAS  Google Scholar 

  6. Bisseling, T., H. Franssen, F. Govers, T. Gloudemans, J. Louwerse, M. Moreman, J.-P. Nap, and A. van Kammen (1985) Nodulin gene expression in Pisus sativum. In Nitrogen Fixation Research Progress, H.J. Evans, P.J. Bottomley, and W.E. Newton, eds. Martinus Nijhoff Publishers, Dordrecht, The Netherlands, p p. 53–59.

    Chapter  Google Scholar 

  7. Böhm, W. (1979) Methods of Studying Root Systems, Springer-Verlag, Berlin.

    Book  Google Scholar 

  8. Bond, G. (1983) Taxonomy and distribution of non-legume nitrogenfixing systems. In Biological Nitrogen Fixation in Forest Ecosystems: Foundations and Applications, J.C. Gordon and C.T. Wheeler, eds. Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, pp 55–87.

    Chapter  Google Scholar 

  9. Bonner, J. (1942) Culture of isolated roots of Acacia melanoxylon. Bull. Torrey Bot. Club 69:130–133.

    Article  Google Scholar 

  10. Bonner, J., and P.S. Devirian (1939) Growth factor requirements of four species of isolated roots. Am. J. Bot. 26:661–665.

    Article  CAS  Google Scholar 

  11. Bonnett, Jr., H.T., and J.G. Torrey (1965) Chemical control of organ formation in root segments of Convolvulus cultured in vitro. Plant Physiol. 40:1228–1236.

    Article  PubMed  CAS  Google Scholar 

  12. Bonnett, Jr., H.T., and J.G. Torrrey (1966) Comparative anatomy of endogenous bud and lateral root formation in Convolvulus arvensis roots cultured in vitro. Am. J. Bot. 53:496–507.

    Article  Google Scholar 

  13. Brewbaker, J.L., J. Halliday, and J. Lyman (1983) Economically important nitrogen fixing tree species. Nitrogen Fixing Tree Research Reports 1:35–40.

    Google Scholar 

  14. Callaham, D., P. Del Tredici, and J.G. Torrey (1978) Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199:899–902.

    Article  PubMed  CAS  Google Scholar 

  15. Chilton, M.-D., D.A, Tepfer, A. Petit, C. David, F. Casse-Delbart, and J. Tempe (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434.

    Article  CAS  Google Scholar 

  16. Christianson, M.L., and D.A. Warwick (1987) Transient biochemical sensitivities during rhizogenesis in vitro. Planta (submitted for publication).

    Google Scholar 

  17. De Bell, D.S., and M.A. Radwan (1979) Growth and nitrogen relations of coppiced black cottonwood and red alder in pure and mixed plantings. Boz. Gaz. 140(Suppl. ): S97–S101.

    Article  Google Scholar 

  18. De Block, M., L. Herrera-Estrella, M. Van Montagu, J. Schell, and P. Zambryski (1984) Expression of foreign genes in regenerated plants and their progeny. EMBO J.3:1681–1689.

    PubMed  Google Scholar 

  19. De Cleene, M., and J. De Ley (1976) The host range of crown gall. Bot. Rev. 42:389–466.

    Article  Google Scholar 

  20. De Cleene, M., and J. De Ley (1981) The host range of infectious hairy-root. Bot. Rev. 47:147–194.

    Article  Google Scholar 

  21. Dittmer, H.J. (1937) A quantitative study of the roots and root hairs of a winter rye plant (Secale cereale). Am. J. Bot. 24:417–420.

    Article  Google Scholar 

  22. Fast, F.T., P.A, Mason, J. Wilson, K. Ingleby, R.C. Munro, L.V. Fleming, and J.W. Deacon (1985) “Epidemiology of sheathing (ecto-) mycorrizhas in unsterile soils: A case study of Betula pendula. Proc. Royal Soc. Edinburgh 85B:299–315.

    Google Scholar 

  23. Flores, H.E., M.W. Hoy, and J.J. Pickard (1987) Secondary metabolites from root cultures. Trends in Biotechnology (in p r e s s ).

    Google Scholar 

  24. Funk, D.T., R.C. Schlesinger, and F. Ponder, Jr. (1979) Autumnolive as a nurse plant for black walnut. Bot. Gaz. 140(Suppl.):S110–S114.

    Article  Google Scholar 

  25. Gianinazzi, S., and V. Gianinazzi-Pearson (1986) Progress and headaches in endomycorrhiza biotechnology. Symbiosis 2:139–149.

    Google Scholar 

  26. Gianinazzi-Pearson, V., and S. Gianinazzi (1983) The physiology of vesicular-arbuscular mycorrhizal roots. Plant and Soil 71:197–209.

    Article  CAS  Google Scholar 

  27. Goforth, P.L., and J.G. Torrey (1977) The development of isolated roots of Comptonia peregrina (Myricaceae) in culture. Am. J. Bot. 64:476–482.

    Article  CAS  Google Scholar 

  28. Harley, J.L., and S.E. Smith (1983) Mycorrhizal Symbiosis, Academic Press, Inc., London.

    Google Scholar 

  29. Kamada, H., O. Okamura, M. Satake, H. Harada, and K. Shimomura (1986) Alkaloid production by hairy root cultures of Atropa belladonna. Plant Cell Reports 5:239–242.

    Article  CAS  Google Scholar 

  30. Kapulnik, Y., C.M. Joseph, and D.A. Phillips (1987) Flavone limitations to root nodulation and symbiotic nitrogen fixation in alfalfa. Plant Physiol, (in press).

    Google Scholar 

  31. Kleinschmidt, G.D., and J.W. Gerdemann (1972) Stunting of citrus seedlings in fumigated soils in relation to the absence of endomychorrhizas. Phytopathology 62:1447–1453.

    Article  Google Scholar 

  32. Lalonde, M., and H.E. Calvert (1979) Production of Frankia hyphae and spores as an infective inoculant for Alnus species. In Symbiotic Nitrogen Fixation in the Management of Temperate Forests, J.C Gordon, C.T. Wheeler, and D.A. Perry, eds. Forest Research Laboratory, Oregon State University, Corvallis, Oregon, pp. 95–110.

    Google Scholar 

  33. Lancelle, S.A., and J.G. Torrey (1984) Early development of Rhizobium-induced root nodules of Parasponia rigida. I. Infection and early nodule initiation. Protoplasma 123:26–37.

    Article  Google Scholar 

  34. Lancelle, S.A., and J.G. Torrey (1985) Early development of Rhizobium-induced root nodules of Parasponia rigida. II. Nodule morphogenesis and symbiotic development. Can. J. Bot. 63:25–35.

    Article  Google Scholar 

  35. Le Tacon, F., G. Jung, J. Mugnier, P. Michelot, and C. Maujprim (1984) Efficiency in a forest nursery of an ectomycorrhizal fungus inoculum produced in a fermentor and entrapped in polymeric gels. Can. J. Bot. 63:1664–1668.

    Google Scholar 

  36. Loeb, J. (1917) Influence of the leaf upon root formation and geotropic curvature in the stem of Bryophyllum calycinum and the possibility of a hormone theory of these processes. Bot. Gaz. 63:25–50.

    Article  Google Scholar 

  37. Loomis, R.S., and J.G. Torrey (1964) Chemical control of vascular cambium initiation in isolated radish roots. Proc. Natl. Acad. Sci., USA 52:3–11.

    Article  PubMed  CAS  Google Scholar 

  38. Lyford, W.H. (1975) Rhizography of non-woody roots of trees in the forest floor. In The Development and Function of Roots, J.G. Torrey and D.T. Clarkson, eds. Academic Press, Inc., London, pp. 179–196.

    Google Scholar 

  39. Marvel, D.J., J.G. Torrey, and F.M. Ausubel (1987) Rhizobium symbiotic genes required for nodulation of legume and non-legume hosts. Proc. Natl. Acad. Sci., USA 84:1319–1323.

    Article  PubMed  CAS  Google Scholar 

  40. Marvel, D.J., G. Kuldau, A. Hirsch, E. Richards, J.G. Torrey, and F.M. Ausubel (1985) Conservation of nodulation genes between Rhizobium meliloti and a slow-growing Rhizobium strain which nodulates a non-legume host. Proc. Natl. Acad. Sci., USA 82:5841–5848.

    Article  PubMed  CAS  Google Scholar 

  41. Marx, D.H., and D.S. Kenney (1982) Production of ectomycorrhizal fungus inoculum. In Methods and Principles of Mycorrhizal Research, N.C. Schenck, ed. American Phytopathology Society, St. Paul, Minnesota, pp. 131–146.

    Google Scholar 

  42. Marx, D.H., J.L. Ruehle, D.S. Kenney, D.E. Cordell, J.W. Riffle, R.J. Molina, W.H. Pawuk, S. Navratil, R.W. Tinus, and O.C. Goodwin (1982) Commercial vegetative inoculum of Pisolithus tinctorius and inoculation techniques for development of ectomycorrhizae on container-grown tree seedlings. For. Sci. 28:373–400.

    Google Scholar 

  43. McClaugherty, C.A., J.D. Aber, and J.A. Melillo (1982) The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63:1481–1490.

    Article  Google Scholar 

  44. Mexal, J., and C.P.P. Reid (1973) The growth of selected mycorrhizal fungi in response to induced water stress. Can. J. Bot. 51:1579–1588.

    Article  Google Scholar 

  45. Meyer, F.H. (1973) Distribution of ectomycorrhizae in native and man-made forests. In Ectomycorrhizae, G.C. Marks and T.T. Kozlowski, eds. Academic Press, Inc., New York, pp. 23–31.

    Google Scholar 

  46. Midgley, S.J., J.W. Turnbull, and R.D. Johnston (1983) Casuarina Ecology, Management and Utilization, CSIRO, Melbourne, Australia, 286 pp.

    Google Scholar 

  47. Moore, L., G. Warren, and G. Strobel (1979) Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2:617–626.

    Article  PubMed  CAS  Google Scholar 

  48. Moser, M., and K. Hanselwandter (1983) Ecophysiology of mycorrhizal symbiosis. Encycl. Plant Physiol. N.S. 12C:391–421.

    CAS  Google Scholar 

  49. Mosse, B., and C. Hepper (1975) Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol. Plant Pathol. 5:215–223.

    Article  Google Scholar 

  50. Normand, P., and M. Lalonde (1986) The genetics of actinorhizal Frankia: A review. Plant and Soil 90:429–453.

    Article  CAS  Google Scholar 

  51. Perinet, P., J.G. Brouillette, J.A. Fortin, and M. Lalonde (1985) Large scale inoculation of actinorhizal plants with Frankia. Plant and Soil 87:175–183.

    Article  Google Scholar 

  52. Peters, K., J.W. Frost, and S.R. Long (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980.

    Article  PubMed  CAS  Google Scholar 

  53. Phillips, J.M., and D.S. Hayman (1970) Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. British Mycol. Soc. 55:158–161.

    Article  Google Scholar 

  54. Plenchette, C., V. Furlan, and J.A. Fortin (1981) Growth stimulation of apple trees in unsterilized soil under field conditions with VA mycorrhiza inoculation. Can. J. Bot. 59:2003–2008.

    Article  Google Scholar 

  55. Raggio, M., N. Raggio, and J.G. Torrey (1957) The nodulation of isolated leguminous roots. Am. J. Bot. 44:325–334.

    Article  CAS  Google Scholar 

  56. Robbins, W.J., and A. Hervey (1971) Cytokinin and growth of excised roots of Bryophyllum calycinium. Proc. Natl. Acad. Sci., USA 68:347–348.

    Article  PubMed  CAS  Google Scholar 

  57. Schenck, N.C., ed. (1982) Methods and Principles of Mycorrhizal Research, American Phytopathology Society, St. Paul, Minnesota.

    Google Scholar 

  58. Smith, C.A., R.C. Skvirsky, and A.M. Hirsch (1986) Histochemical evidence for the presence of a suberinlike compound in Rhizobiuminduced nodules of the nonlegume Parasponia rigida. Can. J. Bot. 64:1474–1483.

    Article  CAS  Google Scholar 

  59. Stribley, D.P., and D.J. Read (1975) Some nutritional aspects of the biology of ericaceous mycorrhizas. In Endomycorrhizas, F.E. Sanders, B. Mosse, and P.B. Tinker, eds. Academic Press, Inc., London, pp. 195–207.

    Google Scholar 

  60. Tarrant, R.F. (1983) Nitrogen fixation in North American forestry: Research and application. In Biological Nitrogen Fixation in Forest Ecosystems: Foundations and Applications, J.C. Gordon and C.T. Wheeler, eds. Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, pp. 261–277.

    Chapter  Google Scholar 

  61. Tepfer, D. (1983) The biology of genetic transformation of higher plants by Agrobacterium rhizogenes. In Molecular Genetics of the Bacteria-Plant Interaction, S. Pühler, ed. Springer-Verlag, New York, pp. 248–258.

    Chapter  Google Scholar 

  62. Tepfer, D. (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: Sexual transmission of the transformed genotype and phenotype. Cell 35:959–967.

    Article  Google Scholar 

  63. Tepfer, D., A. Yacoub, C. Lambert, A. Goldmann, C. Rosenberg, J. Denaire, G. Jung, and J. Slightom (1986) Applications of genetic transformation by Ri T-DNA from Agrobacterium rhizogenes in plant biotechnology. Symbiosis 2:9 (Abstr.).

    Google Scholar 

  64. Tepfer, M., and F. Casse-Delbart (1987) Agrobacterium rhizogenes as a vector for transforming higher plants. Microbiol. Sciences 4:24–28.

    CAS  Google Scholar 

  65. Thimann, K.V. (1977) Hormone Action in the Whole Life of Plants, University of Massachusetts Press, Amherst, Massachusetts.

    Google Scholar 

  66. Tinus, R.W., and S.E. McDonald (1979) How to Grow Tree Seedlings in Containers in Greenhouses, Rocky Mountain Forest and Range Experimental Station General Technical Report RM-60, Forest Service, U.S. Department of Agriculture.

    Google Scholar 

  67. Torrey, J.G. (1985) The development of plant biotechnology. Am. Scientist 73:354–363.

    Google Scholar 

  68. Torrey, J.G. (1986) Endogenous and exogenous influences on the regulation of lateral root formation. In New Root Formation in Plants and Cuttings, M.B. Jackson, ed. Martinus Nijhoff Publishers, Dordrecht, The Netherlands, pp. 31–66.

    Chapter  Google Scholar 

  69. Torrey, J.G. (1988) Cellular interactions between host and endosymbiont in dinitrogen-fixing root nodules of woody plants. In Cell to Cell Signals in Plant, Animal and Microbial Symbiosis, D. Smith, P. Bonfante, and V. Gianinazzi-Pearson, eds. Springer-Verlag, Vienna (in press).

    Google Scholar 

  70. Torrey, J.G., and R.S. Loomis (1967) Auxin-cytokinin control of secondary vascular tissue formation in isolated roots of Raphanus. Am. J. Bot. 54:1098–1106.

    Article  CAS  Google Scholar 

  71. Trinick, M.J. (1973) Symbiosis between Rhizobium and the nonlegume, Trema aspera. Nature (London) 244:459–460.

    Article  Google Scholar 

  72. Trinick, M.J. (1979) Structure of nitrogen-fixing nodules formed by Rhizobium on roots of Parasponia andersonii Planch. Can. J. Microbiol. 25:565–578.

    Article  PubMed  CAS  Google Scholar 

  73. Turvey, N.D., and P.J. Smethurst (1983) Nitrogen fixing plants in forest plantation management. In Biological Nitrogen Fixation in Forest Ecosystems: Foundations and Applications, J.C. Gordon and C.T. Wheeler, eds. Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, pp. 233–259.

    Chapter  Google Scholar 

  74. Verma, D.P.S. (1982) Host-Rhizobium interactions during symbiotic nitrogen fixation. In The Molecular Biology of Plant Development, H. Smith and D. Grierson, eds. Blackwell Science Publishers, Oxford, pp. 437–466.

    Google Scholar 

  75. Verma, D.P.S., and T. Hohn, eds. (1984) Genes Involved in Microbe-Plant Interactions, Springer-Verlag, New York.

    Google Scholar 

  76. Verma, D.P.S., and K. Nadler (1984) Legume-Rhizobium-symbiosis: Host’s point of view. In Genes Involved in Microbe-Plant Interactions, D.P.S. Verma and T. Hohn, eds. Springer-Verlag, New York, pp. 57–93.

    Chapter  Google Scholar 

  77. Warwick, P.A., and M.L. Christianson (1987) Messenger RNA populations during rhizogenesis in vitro. Planta (submitted for publication).

    Google Scholar 

  78. Went, F.W., and K.V. Thimann (1937) Phytohormones, The Macmillan Company, New York.

    Google Scholar 

  79. White, P.R. (1934) Potentially unlimited growth of excised tomato root tips in liquid medium. Plant Physiol. 9:585–600.

    Article  PubMed  CAS  Google Scholar 

  80. Zhang, Z., and J.G. Torrey (1985) Biological and cultural characteristics of the effective Frankia strain HFPCcI3 (Actinomycetales) from Casuarina cunninghamia (Casuarinaceae). Ann. Bot. 56:367–378.

    Google Scholar 

  81. Zimmerman, P.W., and A.E. Hitchcock (1929) Vegetative propagation of holly. Am. J. Bot. 16:556–570.

    Article  Google Scholar 

  82. Zimmerman, P.W., and F. Wilcoxon (1935) Several chemical growth substances which cause initiation of roots and other responses in plants. Contrib. Boyce Thompson Inst. 7:209–229.

    CAS  Google Scholar 

  83. Zobel, R.W. (1975) The genetics of root development. In The Development and Function of Roots, J.G. Torrey and D.T. Clarkson, eds. Academic Press, Inc., London, pp. 261–275.

    Google Scholar 

  84. Zobel, R.W. (1986) Rhizogenetics (root genetics) of vegetable crops. Hort. Sci. 21:956–959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Torrey, J.G. (1988). Biotechnology Applied to the Improvement of Underground Systems of Woody Plants. In: Hanover, J.W., Keathley, D.E., Wilson, C.M., Kuny, G. (eds) Genetic Manipulation of Woody Plants. Basic Life Sciences, vol 44. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1661-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1661-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8922-7

  • Online ISBN: 978-1-4613-1661-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics