Mechanisms of Membrane Fusion in Acidic Lipid-Cation Systems

  • Robert C. MacDonald

Abstract

Since the original discovery that Ca+2 converts small vesicles of phosphatidylserine into large sheets of spirally-wrapped membrane (1), the use of acidic lipid-divalent cation systems as models of membrane fusion has become widespread. There is now a wealth of experimental data available on the response of many different acidic lipids to a number of different cations under a wide variety of conditions (2). Many of these experimental investigations have utilized either a terbium-based fluorescence assay for mixing of vesicles contents (3) or a fluorescence energy transfer assay of membrane mixing (4). It is clear from results of both of these assays, as from early electron micrographs (1) that the membranes of many types of small vesicles merge with each other following divalent cation treatment, but the details of the pathway from initial vesicle to end product remain somewhat obscure. There is little doubt that fusion is involved at some stage, although the absence of precise terminology often leads to considerable ambiguity with regard to what kind of entity is fusing. The distinction is of some consequence, since the morphology of the species in which membranes become reconstructed places limits on the mechanical and chemical forces that may operate and hence influence the validity of the analogy that may be drawn to fusion of biological membranes. Thus, sentiment has been expressed for cautious extrapolation from these model systems to cells on the basis that extensive aggregation and leakage of contents, common features of model systems, cannot occur in cells (5–8).

Keywords

Entropy Migration Hydrocarbon CaCl2 Phosphatidylcholine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Papahadjopoulos, W. Vail, K. Jacobson and G. Poste, Biochim. Biophys. Acta 448:245–264 (1975).Google Scholar
  2. 2.
    N. Düzgünes and J. Bentz, in Spectroscopic Membrane Probes, L. M. Loew, ed. CRC Press, in press.Google Scholar
  3. 3.
    J. Wilschut and D. Papahadjopoulos, Nature 281:690–692 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    D. Hoekstra, Biochim. Biophys. Acta 692:171–175 (1982).CrossRefGoogle Scholar
  5. 5.
    L. Ginsberg, Nature 275:758–760 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    D.A. Kendall and R.C. MacDonald, J. Biol. Chem. 257:13892–13895 (1982).PubMedGoogle Scholar
  7. 7.
    S.J. Morris, C.C. Gibson, P.D. Smith, P.C. Greif, C.W. Stirk, D. Bradley, D.H. Haynes and R. Bumenthai, J. Biol. Chem. 260:4122–4127 ee(1985).PubMedGoogle Scholar
  8. 8.
    B. Kachar, N. Fuller and R.P. Rand, Biophys. J. 50:779–788 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    R. Kwok and E. Evans, Biophys. J. 35:637–652 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    E. Evans and V.A. Parsegian Ann. N.Y. Acad. Sci. 416:13–33 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    V.A. Parsegian and R.P. Rand. Ann N.Y. Acad. Sci. 416:1–12 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    S. Ohki, Biochim. Biophys. Acta 689:1–11 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    A.J. Verkleij, C.J.A. Eckfeld, W.J. Gerritsen, P.R. Cullis and B. DeKruiff Biochim. Biophys. Acta 600:620–624 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    S.W. Hu, T.P. Stewart, L.T. Boni & P.L. Yeagle, Science 212:921–923 (1981).CrossRefGoogle Scholar
  15. 15.
    R.C. MacDonald and S.A. Simon, Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  16. 16.
    J.F. Nagle, Ann. Rev. Phys. Chem 31:29–45 (1980).CrossRefGoogle Scholar
  17. 17.
    J. Israelachvili, Marcelja and Horn. Quart. Rev. Biophys (1980).Google Scholar
  18. 18.
    S.W. Hui, M. Cowden, D. Papahadjopoulos and D. F. Parsons, Biochim. biophys. Acta 382:265–272 (1975).PubMedCrossRefGoogle Scholar
  19. 19.
    R.C. MacDonald, to be published.Google Scholar
  20. 20.
    H. Schindler, FEBS Lett. 122:77–79 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    S. Ohki and H. Ohshima, Biochim. Biophys. Acta 812:147–154 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    F.J. Martin, and R.C. MacDonald, Biochemistry 15:321–327 (1976).PubMedCrossRefGoogle Scholar
  23. 23.
    S. Ohki and J. Duax, Biochim. Biophys. Acta 861:177–186 (1986).PubMedGoogle Scholar
  24. 24.
    A. Walter, C.J. Steer and R. Blumenthal, Biochim. Biophys. Acta 861:319–330 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    J. Wilschut, N. Düzgüneş, and D. Papahadjopoulos, Biochemistry 20:3126–3133 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    E. A. Evans and R. Skalak, Mechanics and Thermodynamics of Membranes, CRC Press, 1980, p. 87–91.Google Scholar
  27. 27.
    S. McLaughlin, N. Mulrine, T. Gresalfi, G. Vaio and A. McLaughlin, J. Gen. Physiol. 77:445–473 (1981).PubMedCrossRefGoogle Scholar
  28. 28.
    J. Wilchut, J. Scholma, M. Bental, D. Hoekstra and S. Nir, Biochim. Biophys Acta, 821:45–55 (1985).CrossRefGoogle Scholar
  29. 29.
    L. Ababu and K. Hildenbrand, Chem. Phys. Lipids, 35:39–48 (1984).CrossRefGoogle Scholar
  30. 30.
    D. Papahadjopoulos, W.J. Vail, W.A, Pangborn and G. Poste Biochim. Biophys. Acta 448:265–283 (1976).PubMedCrossRefGoogle Scholar
  31. 31.
    J.R. Silvius and J. Gagne, Biochemistry 23:3241–3247 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Robert C. MacDonald
    • 1
  1. 1.Department of Biochemistry, Molecular Biology and Cell BiologyNorthwestern UniversityEvanstonUSA

Personalised recommendations