Skip to main content

The Influence of Polar Group Identity on the Interactions between Phospholipid Bilayers

  • Chapter
Molecular Mechanisms of Membrane Fusion

Abstract

Close apposition is a prerequisite for fusion. That apposition is determined by the interaction energies of the polar species populating the surfaces. Those energies are largely influenced by the hydration properties of the polar groups and hydration repulsion often precludes close apposition (1,2). We describe here large differences in the hydration properties of bilayers made of different phospholipid species and their mixtures; differences that greatly affect bilayer separation and may influence the facility of fusion. We have attributed some of the differences to varying contributions of an attractive hydration force (3,4). That force requires correlations between complementary polar groups on the apposing surfaces; correlations that are determined not only by the structure of the polar groups but also by the constraints imposed on them by the packing of their attached hydrocarbon chains. In another sense, hydration attraction reflects the tendency of the assembled polar groups to precipitate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rand, R. P. 1981. Interacting Phospholipid Bilayers: Measured Forces and Induced Structural Changes. Ann. Rev.Biophys. Bioeng. 10:277–314.

    Article  CAS  Google Scholar 

  2. Rand, R. P. and V. A. Parsegian 1986. Mimicry and Mechanism in Phospholipid Models of Membrane Fusion. Ann. Rev. Physiol. 48:201–212.

    Article  CAS  Google Scholar 

  3. Rau, D. C, Lee, B. K., Parsegian, V. A. 1984. Measurement of the Repulsive Forces between Parallel DNA Double Helices. Proc. Nat Acad. Sci. USA. 81:2621–2625.

    Article  PubMed  CAS  Google Scholar 

  4. Parsegian, V. A. Rand, R. P. and D. C. Rau 1985. Hydration Forces: What Next. Chemica Scripta 25:28–31.

    CAS  Google Scholar 

  5. Parsegian, V. A., Rand, R. P. 1983. Membrane Interaction and Deformation. Ann. N. Y. Acad. Sci. 416:1–12.

    Article  PubMed  CAS  Google Scholar 

  6. Rand, R. P., Kachar, B., Reese, T. S. 1985. Dynamic Morphology of Interacting Phosphatidylserine Vesicles. Biophys J. 47:483–89.

    Article  PubMed  CAS  Google Scholar 

  7. Kachar, B., Fuller, N., and R. P. Rand. 1986. Morphological Responses to Calcium-induced Interaction of Phosphatidylserinecontaining Vesicles. Biophys J. 50:779–788.

    Article  PubMed  CAS  Google Scholar 

  8. Düzgünes, N., Nir, S., Wilschut, J., Bentz, J., Newton, C., Portis, A., Papahadjopoulos, D. 1981. Calcium-and Magnesium-induced Fusion of Mixed Phosphatidylserine Vesicles: Effect of Ion Binding. J. Memb. Biol. 59:115–125.

    Article  Google Scholar 

  9. Parsegian, V. A., Fuller, N. L., Rand, R. P. 1979. Measured Work of Deformation and Repulsion of Lecithin Bilayers. Proc. Nat. Acad. Sci. USA 76:2750–2754.

    Article  PubMed  CAS  Google Scholar 

  10. Parsegian V. A., Rand R. P., Fuller, N. L. and D. C. Rau (1986) Osmotic Stress for the Direct Measurement of Intermolecular Forces, in Methods in Enzymology 127:400–416.

    Article  PubMed  CAS  Google Scholar 

  11. Luzzati, V., Husson, F. 1962. The Structure of the Liquid-Crystalline Phases of Lipid Water Systems. J. Cell. Biol. 12:207–219.

    Article  PubMed  CAS  Google Scholar 

  12. Schumacher, G. and H. Sandermann 1976. Solubility of Phospholipid Polar Group Model Compounds in Water. Biochim. Biophys. Acta. 448:642–644.

    Article  PubMed  CAS  Google Scholar 

  13. Evans E. and V. A. Parsegian 1986. Thermal-mechanical Fluctuations Enhance Repulsion Between Bimolecular Layers, Proc. Nat. Acad. Sci. 83:7132–7136.

    Article  PubMed  CAS  Google Scholar 

  14. Hauser, H., Pasher, I., Pearson, R. H. and Sundell, S. 1981. Preferred Conformation and Molecular Packing of Phosphatidylethanolamine and Phosphatidylcholine. Biochim. Biophys. Acta. 650:21–51.

    PubMed  CAS  Google Scholar 

  15. Kolber M.A. and D. H. Haynes, Evidence for a Role of Phosphatidyl Ethanolamine as a Modulator of Membrane-membrane Contact, 1979. J. Memb. Biol. 48:95–114.

    Article  CAS  Google Scholar 

  16. Seddon, J. M., Cevc, G., Kaye, R. D. and D. Marsh 1984. X-ray Diffraction Study of the Polymorphism of Hydrated Diacyl-and Diakylphosphatidylethanolamines. Biochemistry 23: 2634–2644.

    Article  PubMed  CAS  Google Scholar 

  17. Mcintosh, T. J. and S. A. Simon, 1986. Area per Molecule and Distribution of Water in Fully hydrated Dilauroylphosphatidylethanolamine Bilayers. Biochemistry 25:4948–4952

    Article  PubMed  CAS  Google Scholar 

  18. Jendrasiak, G. L. and J. C. Mendible, 1976. The Phospholipid Head-Group Orientation: Effect on Hydration and Electrical Conductivity. Biochim. Biophys. Acta 424:149–158.

    PubMed  CAS  Google Scholar 

  19. Mulukutla, S. and G. G. Shipley 1984. Structure and Thermotropic Properties of Phosphatidylethanolamine and its N-Methyl Derivatives. Biochemistry 23:2514–2519.

    Article  PubMed  CAS  Google Scholar 

  20. Marcelja, S., Radlc, N., 1976. Repulsion of Interfaces due toBoundary Water. Chem. Phys. Lett. 42:129–130.

    Article  CAS  Google Scholar 

  21. Boggs, J., 1984. Intermolecular Hydrogen Bonding Between Membrane Lipids. Biomembranes 12:3–43.

    CAS  Google Scholar 

  22. Evans, E., Metcalfe, M. 1984. Free Energy Potential for Aggregation of Giant, Neutral Lipid Bilayer Vesicles by van der Waals Attraction. Biophys. J. 46:423–425.

    Article  PubMed  CAS  Google Scholar 

  23. Evans, E. A., Parsegian, V. A. 1983. Energetics of Membrane Deformation and Adhesion in Cell and Vesicle Aggregation. Ann N.Y. Acad. Sci. 416:13–33.

    Article  PubMed  CAS  Google Scholar 

  24. Evans, E., and D. Needham, 1986. Giant Vesicle Bilayers Composed of Mixtures of Lipids, Cholesterol and Polypeptides. Farad. Soc. Discussions 81: (in press).

    Google Scholar 

  25. Feigensen, G. W., 1986. On the Nature of Calcium Ion Binding between Phosphatidylserine Lamellae. Biochemistry 25:5819–582.

    Article  Google Scholar 

  26. Marra, J., 1985. Controlled Deposition of Lipid Monolayers and Bilayers onto Mica and Direct Force Measurements Between Galactolipid Bilayers in Aqueous Solutions. J. Coll. Interf. Sci. 107:446–458.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Rand, R.P., Parsegian, V.A. (1988). The Influence of Polar Group Identity on the Interactions between Phospholipid Bilayers. In: Ohki, S., Doyle, D., Flanagan, T.D., Hui, S.W., Mayhew, E. (eds) Molecular Mechanisms of Membrane Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1659-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1659-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8921-0

  • Online ISBN: 978-1-4613-1659-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics