Skip to main content

‘Entry’ of Enveloped Viruses into Liposomes

  • Chapter
Book cover Molecular Mechanisms of Membrane Fusion

Abstract

‘Enveloped’ viruses, e. g., paramyxoviruses, myxoviruses, herpesviruses and human immunodeficiency virus, are viruses which have a membrane surrounding their nucleoprotein. The main function of the membrane of enveloped viruses is to provide a mechanism for entry and exit of the virion (the virus particle). Viral entry into cells comprises viral attachment to receptors, envelopment of the virus by the host, and fusion of viral and host membranes followed by viral disassembly (uncoating), activation of viral enzymes and messenger RNA synthesis. Membrane fusion is part of a continuum of membrane-related steps involved in viral entry and is probably only fully understood in the context of all the steps in viral entry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morgan, C., and Howe, C, 1968, Structure and development of viruses as observed in the electron microscope. IX. Entry of Parainfluenza I (Sendai) virus, J. Virol., 2:1122–1132.

    PubMed  CAS  Google Scholar 

  2. Miura, N., Uchida, T., and Okada, Y., 1982, HVJ (Sendai virus)-induced envelope fusion and cell fusion are blocked by monoclonal anti-HN protein antibody that does not inhibit hemagglutination activity of HVJ, Exp. Cell Res., 141:409–420.

    Article  PubMed  CAS  Google Scholar 

  3. Homma, M., and Ohuchi, M., 1973, Trypsin action on the growth of Sendai virus in tissue culture cells. III. Structural differences of Sendai viruses grown in eggs and tissue culture cells, J. Virol., 12:1457–1465.

    PubMed  CAS  Google Scholar 

  4. Scheid, A., and Choppin, P. W., 1974, Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus, Virology, 57:475–490.

    Article  PubMed  CAS  Google Scholar 

  5. Blumberg, B. M., Rose, K., Simona, M. G., Roux, L., Giorgi, C, and Kolakofsky, D., 1984, Analysis of the Sendai virus M gene and protein, J. Virol., 52:656–663.

    PubMed  CAS  Google Scholar 

  6. Giuffre, R. M., Tovell, D. R., Kay, C. M., and Tyrrell, D. L. J., 1982, Evidence for an interaction between the membrane protein of a paramyxovirus and actin, J. Virol.. 42:963–968.

    PubMed  CAS  Google Scholar 

  7. Shimizu, K., and Ishida, N., 1975, The smallest protein of Sendai virus: Its candidate function of binding nucleocapsid to envelope, Virology. 67:427–437.

    Article  CAS  Google Scholar 

  8. Kim, J., Hama, K., Miyake, Y., and Okada, Y., 1979, Transformation of intramembrane particles of HVJ (Sendai virus) envelopes from an invisible to visible form on aging of virions, Virology. 95:523–535.

    Article  PubMed  CAS  Google Scholar 

  9. Hamaguchi, M., Yoshida, T., Nishikawa, K., Naruse, H., and Nagai, Y., 1983, Transcriptive complex of Newcastle disease virus. I. Both L and P proteins are required to constitute an active complex, Virology. 128:105–117.

    Article  PubMed  CAS  Google Scholar 

  10. Colonno, R. J., and Stone, H. O., 1976, Isolation of a transcriptive complex from NDV virions, J. Virol.. 19:1080–189.

    PubMed  CAS  Google Scholar 

  11. Weiss, S. R., and Bratt, M. A., 1974, Polyadenylate sequences on NDV mRNA synthesized in vivo and in vitro, J. Virol., 13:1220–1230.

    PubMed  CAS  Google Scholar 

  12. Zhirnov, O. P., and Bukrinskaya, A. G., 1977, Study of Sendai virus proteins: Proteolytic activity in virus particles, Voprosy Virusologii. 5:571–577.

    PubMed  Google Scholar 

  13. Israel, S., Ginsberg, D., Laster, Y., Zakai, N., Milner, Y., and Loyter, A., 1983, A possible involvement of virus-associated protease in the fusion of Sendai virus envelopes with human erythrocytes, Biochim. Biophys. Acta, 732:337–346.

    Article  PubMed  CAS  Google Scholar 

  14. Sugawara, K.-E., Tashiro, M., and Homma, M., 1982, Intermolecular association of HANA glycoprotein of Sendai virus in relation to the expression of biological activities, Virology. 117:444–455.

    Article  PubMed  CAS  Google Scholar 

  15. Lamb, R. A., 1975, The phosphorylation of Sendai virus proteins by a virus particleassociated protein kinase, J. Gen. Virol.. 26:249–263.

    Article  PubMed  CAS  Google Scholar 

  16. Roux, L., and Kolakofsky, D., 1974, Protein kinase associated with Sendai virions, J. Virol. 13:545–547.

    PubMed  CAS  Google Scholar 

  17. Neurath, A. R., 1965, Study on the adenosine diphosphatase (adenosine triphosphatase) associated with Sendai virus, Acta Virol.. 9:313–322.

    PubMed  CAS  Google Scholar 

  18. Haywood, A. M., 1974, Characteristics of Sendai virus receptors in a model membrane, J. Mol. BioL. 83:427–436.

    Article  PubMed  CAS  Google Scholar 

  19. Haywood, A. M., 1975, Model membranes and Sendai virus: Surface-surface interactions, in:“Negative Strand Viruses,” Barry, R. D., and Mahy, B. W. J., eds., Vol.2, pp. 923–928, Academic Press, London.

    Google Scholar 

  20. Holmgren, J., Svennerholm, L., Elwing, H., Fredman, P., and Strannegärd, Ö., 1980, Sendai virus receptor: Proposed recognition structure based on binding to plastic-adsorbed gangliosides., Proc. Natl. Acad. Sci.. USA. 77:1947–1950.

    Article  PubMed  CAS  Google Scholar 

  21. Markwell, M. A. K., Svennerholm, L., and Paulson, J. C., 1981, Specific gangliosides function as host cell receptors for Sendai virus, Proc. NatLAcad. Sci. USA. 78:5406–5410.

    Article  CAS  Google Scholar 

  22. Haywood, A. M., and Boyer, B. P., 1982, Sendai virus membrane fusion: Time course and effect of temperature, pH, calcium, and receptor concentration, Biochemistry. 21:6041–6046.

    Article  PubMed  CAS  Google Scholar 

  23. Haywood, A. M., and Boyer, B. P., 1986, Ficoll and dextran enhance adhesion of Sendai virus to liposomes containing receptor (ganglioside GD1a), Biochemistry. 25:3925–3929.

    Article  PubMed  CAS  Google Scholar 

  24. Grant, C. W. M., and Peters, M. W., 1984, Lectin-membrane interactions. Information from model systems, Biochim. Biophvs. Acta. 779:403–422.

    CAS  Google Scholar 

  25. Haywood, A. M., and Boyer, B. P., 1984, Effect of lipid composition upon fusion of liposomes with Sendai virus membranes, Biochemistry, 23:4161–4166.

    Article  PubMed  CAS  Google Scholar 

  26. Knutton, S., 1976, Changes in viral envelope structure preceding infection, Nature, 264:672–673.

    Article  PubMed  CAS  Google Scholar 

  27. Knutton, S., 1978, The mechanism of virus-induced cell fusion, Micron. 9:133–154.

    CAS  Google Scholar 

  28. Haywood, A. M., 1975, ‘Phagocytosis’ of Sendai virus by model membranes, J. Gen. Virol.. 29:63–68.

    Article  PubMed  CAS  Google Scholar 

  29. Griffin, F. M. Jr., Griffin, J. A., Leider, J. E., and Silverstein, S. C., 1975, Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particlebound ligands to specific receptors on the macrophage plasma membrane, J. Exp. Med.. 142:1263–1282.

    Article  PubMed  Google Scholar 

  30. Tsao, Y-s., and Huang, L., 1986, Kinetic studies of Sendai virus-target membrane interactions: Independent analysis of binding and fusion., Biochemistry. 25:3971–3976.

    Article  PubMed  CAS  Google Scholar 

  31. Haywood, A. M., 1974, Fusion of Sendai viruses with model membranes, J. Mol. Biol., 87:625–628.

    Article  PubMed  CAS  Google Scholar 

  32. Kundrot, C. E., Spangler, E. A., Kendall, D. A., MacDonald, R.C., and MacDonald, R. L., 1983, Sendai virus-mediated lysis of liposomes requires cholesterol, Proc. Natl. Acad. Sci.. USA. 80:1608–1612.

    Article  PubMed  CAS  Google Scholar 

  33. Tsao, Y.-s., and Huang, L., 1985, Sendai virus induced leakage of liposomes containing gangliosides, Biochemistry. 24:1092–1098.

    Article  PubMed  CAS  Google Scholar 

  34. Umeda, M., Nojima, S., and Inoue, K., 1985, Effect of lipid composition on HVJmediated fusion of glycophorin liposomes to erythrocytes, J. Biochem., 97:1301–1310.

    PubMed  CAS  Google Scholar 

  35. Klappe, K., Wilschut, J., Nir, S., and Hoekstra, D., 1986, Parameters affecting fusion between Sendai virus and liposomes. Role of viral proteins, liposome composition, and pH, Biochemistry. 25:8252–8260.

    Article  PubMed  CAS  Google Scholar 

  36. Rand, R. P., 1981, Interacting phospholipid bilayers: measured forces and induced structural changes, Ann. Rev. Biophys. Bioeng., 10:277–314.

    Article  CAS  Google Scholar 

  37. Abidi, T. F., and Yeagle, P. L., 1984, Surface properties of Sendai virus envelope, Biochim. Biophys. Acta. 775:419–425.

    Article  PubMed  CAS  Google Scholar 

  38. Weiss, L., and Harlos, J. P., 1972, Short-term interactions between cell surfaces, in: “Progress in Surface Science” 1 pp. 355–405, Pergamon Press, New York.

    Google Scholar 

  39. Haywood, A. M., and Boyer, B. P., 1981, Initiation of fusion and disassembly of Sendai virus membranes into liposomes, Biochim. Biophys. Acta. 646:31–35.

    Article  PubMed  CAS  Google Scholar 

  40. Haywood, A. M., 1983, Virus infection of liposomes (or virology for the microveterinarian), in:“Liposome Letters,” Bangham, A.D., ed., pp. 277–287, Academic Press, London.

    Google Scholar 

  41. Evans, E. A., and Parsegian, V. A., 1983, Energetics of membrane deformation and adhesion in cell and vesicles aggregation, Ann. N.Y. Acad. Sci.. 416:13–33.

    Article  PubMed  CAS  Google Scholar 

  42. Nir, S., Klappe, K., and Hoekstra, D., 1986, Kinetics and extent of fusion between Sendai virus and erythrocyte ghosts: Application of a mass action kinetic model, Biochemistry. 25:2155–2161.

    Article  PubMed  CAS  Google Scholar 

  43. Ohki, S., 1984, Effects of divalent cations, temperature, osmotic pressure gradient, and vesicle curvature on phosphatidylserine vesicle fusion, J. Membrane Biol., 77:265–275.

    Article  CAS  Google Scholar 

  44. Richardson, C. D., Scheid, A., and Choppin, P.W., 1980, Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the Fj or HA2 viral polypeptides, Virology. 105:205–222.

    Article  PubMed  CAS  Google Scholar 

  45. Fukai, K., and Suzuki, T., 1955, On the characteristics of a newly-isolated hemagglutinating virus from mice, Med. J. Osaka Univ., 6:1–15.

    Google Scholar 

  46. Chejanovsky, N., Zakai, N., Amselem, S., Barenholz, Y., and Loyter, A., 1986, Membrane vesicles containing the Sendai virus binding glycoprotein, but not the viral fusion protein, fuse with phosphatidylserine liposomes at low pH, Biochemistry. 25:4810–4817.

    Article  PubMed  CAS  Google Scholar 

  47. Ciampor, F., and Krifanova, O., 1971, Interaction of plasma membranes with influenza virus. IE. Electron microscopic study of interactions, Acta Virol.. 15:361–366.

    PubMed  CAS  Google Scholar 

  48. Blaskovic, P., Rhodes, A. J., Doane, F. W., and Labzoffsky, N. A., 1972, Infection of chick embryo tracheal organ cultures with influenza A2 (Hong Kong) virus, Archiv. Gesamte Virusforsch.. 38:250–266.

    Article  CAS  Google Scholar 

  49. Morgan, C, and Rose, H. M., 1968, Stucture and development of viruses as observed in the electron microscope. VIII. Entry of influenza virus, J. Virol.. 2:925–936.

    PubMed  CAS  Google Scholar 

  50. Fidgen, K. J., and Tisdale, M., 1981, An ‘on grid’ electron microscopic method for studying the interaction and fusion of influenza A virus with human erythrocyte membranes, J. Virol. Methods. 3:271–276.

    Article  PubMed  CAS  Google Scholar 

  51. Skehel, J. J., Bayley, P. M., Brown, E. B., Martin, S. R., Waterfield, M. D., White, J. M., Wilson, I. A., and Wiley, D. C., 1982, Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion, Proc. Natl. Acad. Sci., USA. 79:968–972.

    Article  PubMed  CAS  Google Scholar 

  52. Daniels, R. S., Downie, J. C, Hay, A. J., Knossow, M., Skehel, J. J., Wang, M. L., and Wiley, D. C., 1985, Fusion mutants of the influenza virus hemagglutinin glycoprotein, Cell. 40:431–439.

    Article  PubMed  CAS  Google Scholar 

  53. Doms, R. W., Helenius, A., and White, J., 1985, Membrane fusion activity of the influenza virus hemagglutinin. The low pH-induced conformational change, J. Biol. Chem.. 260:2973–2981.

    PubMed  CAS  Google Scholar 

  54. Fries, E., and Helenius, A., 1979, Binding of Semliki Forest virus and its spike glycoproteins to cells, Eur. J. Biochem.. 97:213–220.

    Article  PubMed  CAS  Google Scholar 

  55. Haywood, A. M., and Boyer, B. P., 1985, Fusion of influenza virus membranes with liposomes at pH 7.5, Proc. Natl. Acad. Sci.. USA. 82:4611–4615.

    Article  PubMed  CAS  Google Scholar 

  56. Haywood, A. M., and Boyer B. P., 1986, Time and temperature dependence of influenza virus membrane fusion at neutral pH, J. Gen. Virol., 67:2813–2817.

    Article  PubMed  CAS  Google Scholar 

  57. Yoshimura, A., Kuroda, K., Kawasaki, K., Yamashina, S. Maeda, T., and Ohnishi, S.-L, 1982, Infectious cell entry mechanism of influenza virus, J. Virol.. 43:284–293.

    PubMed  CAS  Google Scholar 

  58. White, J., Helenius, A., and Kartenbeck, J., 1982, Membrane fusion activity of influenza virus, EMBO J.. 1:217–222.

    PubMed  CAS  Google Scholar 

  59. Howe, C., Lee, L. T., and Rose, H. M., 1961, Collocalia mucoid: A substrate for myxovirus neuraminidase, Arch. Biochem. Biophys.. 95:512–520.

    Article  PubMed  CAS  Google Scholar 

  60. Ruigrok, R. W. H., Martin, S. R., Wharton, S. A., Skehel, J. J., Bayley, P.M., and Wiley, D. C., 1986, Conformational changes in the hemagglutinin of influenza virus which accompany heat-induced fusion of virus with liposomes, Virology. 155: 484–497.

    Article  PubMed  CAS  Google Scholar 

  61. Stegmann, T., Hoekstra, D., Scherphof, G., and Wilschut, J., 1986, Fusion activity of influenza virus. A comparison between biological and artificial target membranes, J. Biol. Chem.. 261:10966–10969.

    PubMed  CAS  Google Scholar 

  62. Rogers, G. N., and Paulson, J. C, 1983, Receptor determinants of human and animal influenza virus isolates: Differences in receptor specificity of the H3 hemagglutinin based on species of origin, Virology. 127:361–373.

    Article  PubMed  CAS  Google Scholar 

  63. Dubois-Dalcq, M., Holmes, K. V., and Rentier, B., 1984, Assembly of paramyxoviridae, in:“Assembly of Enveloped RNA Viruses,” pp. 44–65, Springer Verlag, New York.

    Google Scholar 

  64. Haywood, A. M., and Boyer, B. P., 1982, Fusion and disassembly of Sendai virus membranes with liposomes, Biophys. J.. 37:128–129.

    Article  PubMed  CAS  Google Scholar 

  65. Homma, M., Shimizu, K., Shimizu, Y., Shimizu, Y. K., and Ishida, N., 1976, On the study of Sendai virus hemolysis. I. Complete Sendai virus lacking in hemolytic activity, Virology. 71:41–47.

    Article  PubMed  CAS  Google Scholar 

  66. Shimizu, Y. K., Shimizu, K., Ishida, N., and Homma, M., 1976, On the study of Sendai virus hemolysis. II. Morphological study of envelope fusion and hemolysis, Virology. 71:48–60.

    Article  PubMed  CAS  Google Scholar 

  67. Knutton, S., and Bachi, T., 1980, The role of cell swelling and haemolysis in Sendai virusinduced cell fusion and in the diffusion of incorporated viral antigens, J. Cell Sci.. 42:153–167.

    PubMed  CAS  Google Scholar 

  68. Maeda, T., Kawasaki, K., and Ohnishi, S.-L, 1981, Interaction of influenza virus hemagglutinin with target membrane lipids is a key step in virus-induced hemolysis and fusion at pH 5.2, Proc. Natl. Acad. Sci. USA. 78:4133–4137.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Haywood, A.M. (1988). ‘Entry’ of Enveloped Viruses into Liposomes. In: Ohki, S., Doyle, D., Flanagan, T.D., Hui, S.W., Mayhew, E. (eds) Molecular Mechanisms of Membrane Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1659-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1659-6_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8921-0

  • Online ISBN: 978-1-4613-1659-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics