Advertisement

Properties of a Viral Fusion Protein

  • Robert W. Doms
  • Ari Helenius

Abstract

The mechanisms by which proteins mediate biological membrane fusion are not clearly understood. We have analyzed acid-induced changes in influenza hemagglutinin (HA), a viral membrane fusion factor, and correlated them with its acid-triggered fusion activity. Our results, some of which are reported here for the first time, indicate that the extramembraneous domain of HA acquires amphiphilic properties when converted to the fusion active form by mild low pH treatment. We show that each HA subunit acquires the ability to bind approximately 10 additional molecules of Triton X-100. A fusion inactive precursor of HA, termed HAO, does not acquire this property. The trimeric ectodomain fragment of HA tends, moreover, to dissociate after acid treatment into dimers and trimers. A model for the acid-induced changes in HA and the mechanism of fusion are discussed.

Keywords

Influenza Virus Membrane Fusion Hydrophobic Moiety Semliki Forest Virus Fusion Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bordier, C. (1981) Phase separation of integral membrane protiens in Triton X-114 solution. J.Biol.Chem. 256:1604–1607.PubMedGoogle Scholar
  2. Bothwell, M.A, G.J. Howlett and H.K. Schachman(1978) A sedimentation equilibrium method for determining molecular weights of proteins with a tabletop high speed air turbine centrifuge. J. Biol. Chem. 253:2073–2077.PubMedGoogle Scholar
  3. Boulay, F, R.W. Doms, I. Wilson and A. Helenius (in press) The influenza hemagglutinin precursor as an acid sensitve probe of the biosynthetic pathway.Google Scholar
  4. Bradford, M.M (1972) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing die principle of protein dye binding. Anal. Biochem. 72:248–254.CrossRefGoogle Scholar
  5. Brand, C. M and J.J. Skehel (1972) Crystalline antigen from the influenza virus envelope. Nat. (London) New Biol.. 238:145–147.CrossRefGoogle Scholar
  6. Copeland, C.S, R.W. Doms, E.M. Bolzau, R.G. Webster and A. Helenius (1986) Assembly of influenza hemagglutinin trimers and its role in intracellular transport. J. Cell Biol. 102:1179–1191.CrossRefGoogle Scholar
  7. Daniels, R.S, J.C. Downie, A. J. Hay, M. Knossow, J.J. Skehel, M.L. Wang, and D.C. Wiley (1985) Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell, 40:431–439.PubMedCrossRefGoogle Scholar
  8. Daniels, R.S, A.R. Douglas, J.J. Skehel and D.C. Wiley (1983) Analyses of the antigenicity of influenza hemagglutinin at the pH optimum for virus-mediated membrane fusion. J. Gen. Virol. 64:1657–1662.PubMedCrossRefGoogle Scholar
  9. Doms, R.W, D.S. Keller, A. Helenius and W.E. Balch (1987) Assembly and transport of VSV G protein, submitted.Google Scholar
  10. Doms, R.W, J. White, F. Boulay and A. Helenius (in press) Influenza virus hemagglutinin and membrane fusion, in Cellular Membrane Fusion, eds. J. Wilschut and D. Hoekstra. Marcell Dekker, New York.Google Scholar
  11. Doms, R.W, M.-J. Gething, J. Henneberry, J. White, and A. H. Helenius (1986) A variant influenza virus hemagglutinin that induces fusion at elevated pH. J. Virol., 52:603–613.Google Scholar
  12. Doms, R.W and A. Helenius (1986) Quaternary structure of influenza virus hemagglutnin after acid treatment J. Virol. 60:833–839.PubMedGoogle Scholar
  13. Doms, R.W, A.H. Helenius, and J.M. White (1985) Membrane fusion activity of the influenza virus hemagglutinin: the low pH-induced conformational change. J. Biol. Chem.,260:2973–2981.PubMedGoogle Scholar
  14. Doxsey, S., J. Sambrook, A. Helenius and J. White (1985) An efficient method for introducing macromolecules into living cells. J. Cell Biol. 101:19–27.PubMedCrossRefGoogle Scholar
  15. Fraker, P.J. and J.C. Speck, Jr. (1978) Protein and cell membrane iodinations with a sparingly soluble chloroamide, l,3,4,6-tetrachloro-3a,6a-diphenyl-glycoluracil. Biochem. Biophys. Res. Commun., 80:849–857.PubMedCrossRefGoogle Scholar
  16. Fuller, S.D. (1987) The T=4 envelope of Sinbis virus is organized by interactions with a complementary T=3 capsid. Cell 41:923–934.CrossRefGoogle Scholar
  17. Gething, M.-J., R.W. Doms, D. York, and J. White (1986a) Studies on the mechanism of membrane fusion: Site-specific mutagenesis of the hemagglutinin of influenza virus. J. Cell Biol., 102:11–23.PubMedCrossRefGoogle Scholar
  18. Gething, M.-J., R.W. Doms, J. White and A. Helenius (1986b) Studies on the mechanism of membrane fusion, in Protein Engineering: Applications in Science, Medicine and Industry. Ed. M. Inouye and R. Sarma. pp. 193–215. Academic Press, New York.Google Scholar
  19. Gething, M.-J. and J. Sambrook (1982) Construction of influenza hemagglutinin genes that code for intracellular and secreted forms of the protein. Nature 300:598–603.PubMedCrossRefGoogle Scholar
  20. Gething, M.-J., J.M. White and M.D. Waterfield (1978) Purification of the fusion protein of Sendai virus: analysis of the NH2-terminal sequence generated during precursor activation. Proc. Natl. Acad. Sci. USA 75:2737–2740.PubMedCrossRefGoogle Scholar
  21. Gibson, S., C.Y. Jung, M. Takahashi and J. Lenard (1986) Radiation inactivation analysis of influenza virus reveals different target sizes for fusion, leakage, and neuraminidase activities. Biochem. 25:6264–6268.CrossRefGoogle Scholar
  22. Graves, P.N., J.L. Schulman, J.F. Young and P. Palese (1983) Preparation of influenza virus subviral particles lacking the HA1 subunit of HA: unmasking of cross-reactive HA2 determinants. Virology 126: 106–116.PubMedCrossRefGoogle Scholar
  23. Haywood, A.M. and B.P. Boyer (1985) Fusion of influenza virus membranes with liposomes at pH 7.5. Proc. Nad. Acad. Sci. 52:4611–4615.CrossRefGoogle Scholar
  24. Helenius, A. and K. Simons (1975) Solubilization of membranes by detergents. Biochim. Biophys. ACTA 415:29–79.PubMedGoogle Scholar
  25. Herz, C., E. Stavnezer, R.M. Krug and T. Gurney (1981) Influenza virus, an RNA virus, synthesizes its messenger RNA in the nucleus of infected cells. Cell 26:391–400.PubMedCrossRefGoogle Scholar
  26. Jackson, D.C. and A. Nestorowicz (1985) Antigenic determinants of influenza virus hemagglutinin. XL Conformational changes detected by monoclonal antibodies. Virol. 145:72–83.CrossRefGoogle Scholar
  27. Martin, R.G. and B.N. Ames (1961) A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J. Biol. Chem. 236:1372–1379.PubMedGoogle Scholar
  28. Matlin, K.S., H. Reggio, A. Helenius and K. Simons (1981) Infectious entry pathway of influenza virus in a canine kidney cell line. J. Cell Biol. 21.601–613.CrossRefGoogle Scholar
  29. McEwen, C.R. (1967) Tables for estimating sedimentation through linear concentration gradients of sucrose solution. Anal. Biochem. 20: 114–149.PubMedCrossRefGoogle Scholar
  30. Meunier, J.C., R.W. Olsen, and J.P. Changeux (1972) Studies on the cholinergic receptor from Electrophorus Electricus. Effect of detergents on some hydrodynamic properties of the receptor protein in solution. FEBS Lett. 24:63–68.PubMedCrossRefGoogle Scholar
  31. Nestorowicz, A., G. Laver and D.C. Jackson (1985) Antigenic determinants of influenza virus hemagglutinin. X. A comparison of the physical and antigenic properties of monomeric and trimeric forms. J. Gen. Virol. 66:1687–1695.PubMedCrossRefGoogle Scholar
  32. Rand, R (1981) Interacting phospholipid bilayers: measured forces and induced structural changes. Ann. Rev. Biophys. Bioeng. 10:277–314.CrossRefGoogle Scholar
  33. Reynolds, J.A. and C. Tanford (1976) Determination of molecular weight of the protein moiety in protein-detergent complexes without direct knowledge of detergent binding. Proc. Natl. Acad. Sci. 22:4467–4470.CrossRefGoogle Scholar
  34. Rott, R., M. Orlich, H.-D. Klenk, M.L. Wang, J.J. Skehel and D.C. Wiley (1984) Studies on the adaptation of influenza viruses to MDCK cells. EMBO J. 2:3329–3332.Google Scholar
  35. Ruigrok, R.W.H., N.G. Wrigley, L.J. Calder, S. Cusack, S.A. Wharton, E.B. Brown and J.J. Skehel (1986) Electron microscopy of the low pH structure of influenza virus hemagglutinin. EMBO J. 5:41–49.PubMedGoogle Scholar
  36. Simons, K., A. Helenius and H. Garoff (1973) Solubilization of the membrane proteins from Semliki Forest virus with Triton X-100. J. Mol. Biol. 80:119–133.PubMedCrossRefGoogle Scholar
  37. Skehel, J.J., P.M. Bayley, E.B. Brown, S.R. Martin, M.D. Waterfield, J.M. White, L.A. Wilson and D.C. Wiley (1982) Changes in the conformation of influenza hemagglutinin at the pH optimum of virus mediated membrane fusion. Proc. Natl. Acad. Sci., USA 22:968–972.CrossRefGoogle Scholar
  38. Stegmann, T., D. Hoekstra and J. Wilschut (1986) Fusion activity of influenza virus. A comparison between artificial and biological target membrane vesicles. J. Biol. Chem. 261:10966–10969.PubMedGoogle Scholar
  39. Vogel, R.H., S.W. Provencher, C.-M. Bonsdorff, M. Adrian and J. Dubochet (1986) Envelope structure of Semliki Forest virus reconstructed from cryo-electron micrographs. Nature 320:533–535.PubMedCrossRefGoogle Scholar
  40. Webster, R.G., L.E. Brown and D.C. Jackson (1983) Changes in the antigenicity of the hemagglutinin molecule of H3 influenza virus at acidic pH. Virol. 126:587–599.CrossRefGoogle Scholar
  41. White, J., M. Kielian and A. Helenius (1983) Membrane fusion proteins of enveloped animal viruses. Q. Rev. Biophys. 16:151–195.PubMedCrossRefGoogle Scholar
  42. White, J., J. Kartenbeck and A. Helenius (1982) Membrane fusion activity of influenza virus. EMBO J. 1:217–222.PubMedGoogle Scholar
  43. White, J. and A. Helenius (1980) pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc. Natl. Acad. Sci. 22:3273–3277.CrossRefGoogle Scholar
  44. Wiley, D.C., L.A. Wilson and J.J. Skehel (1981) Structural identification of the antibody binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289:373–378.PubMedCrossRefGoogle Scholar
  45. Wiley, D.C., J.J. Skehel and M. Waterfield (1977) Evidence from studies with a cross-linking reagent that the hemagglutinin of influenza virus is a trimer. Virol. 22:446–448.Google Scholar
  46. Wilson, LA., J.J. Skehel and D.C. Wiley (1981) Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3A resolution. Nature (London) 289:366–373.CrossRefGoogle Scholar
  47. Yewdell, J.W., W. Gerhard and T. Bachi (1983) Monoclonal anti-hemagglutinin antibodies detect irreversible antigenic alterations that coincide with the acid activation of influenza virus A/PR/8/34-mediated hemolysis. J. Virol. 48:239–248.PubMedGoogle Scholar
  48. Yoshimura, A. and S.-I. Ohnishi (1984) Uncoating of influenza virus in endosomes. J. Virol. 51:497–504.PubMedGoogle Scholar
  49. Young, J. D.-E., G.P.H. Young, Z.A. Cohn and J. Lenard (1983) Interaction of enveloped animal viruses with planar bilayer membranes: Observations on Sendai, Influenza, Vesicular Stomatitis, and Semliki Forest viruses. Virology 128: 186–194.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Robert W. Doms
    • 1
  • Ari Helenius
    • 1
  1. 1.Department of Cell BiologyYale University School of MedicineNew HavenUSA

Personalised recommendations