Water-Mediated Effects of PEG on Membrane Properties and Fusion

  • Klaus Arnold
  • Andreas Herrmann
  • Klaus Gawrisch
  • Lothar Pratsch

Abstract

Poly(ethylene glycol) (PEG) has met wide applications in biology and medicine, PEG is used as a fractional precipitating agent for protein purification and isolation, DNA and protein crystallization and for the cryo preservation of biological material. PEG of a molecular weight of about 6000 is commonly used to induce fusion of liposomes as well as of a wide variety of plant protoplasts and animal cells.

Keywords

Surfactant Hydration Glycol Shrinkage Baran 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahkong, Q. F., Fisher, D., Tampion, W., and Lucy, J. A., 1975, Mechanisms of cell fusion, Nature (London), 253: 194–195PubMedCrossRefGoogle Scholar
  2. Ahkong, Q. F., and Lucy, J. A., 1986, Osmotic forces in artifically induced cell fusion, Biochim. Biophys. Acta. 858: 206–216.PubMedCrossRefGoogle Scholar
  3. Atha, D. H., and Ingham, K. C., 1981, Mechanism of precipitation of proteins by PEG, J. Biol. Chem., 256: 12108–12117.PubMedGoogle Scholar
  4. Aldwinckle, T. J., Ahkong, Q. F., Bangham, A, D., Fisher, D., and Lucy, J, A., 1982, Effects of polyethylene glycol on liposomes and erythrocyte permeability changes and membrane fusion, Biochim. Biophys. Acta, 689: 548–560.PubMedCrossRefGoogle Scholar
  5. Arnold, K., Lösche, A., and Gawrisch, K., 1981, 31P-NMR investigations of phase separation in phosphatidylcholine/phosphatidylethanolamine mixtures, Biochim. Biophys. Acta. 645:143–148.PubMedCrossRefGoogle Scholar
  6. Arnold, K., Pratsch, L., and Gawrisch, K., 1983, Effect of poly(ethylene glycol) on phospholipid hydration and polarity of the external phase, Biochim. Biophys. Acta, 728: 121–128.PubMedCrossRefGoogle Scholar
  7. Arnold, K., Herrmann, A., Pratsch, L., and Gawrisch, K., 1985a, The dielectric properties of aqueous solutions of PEG and their influence on membrane structure, Biochim. Biophys. Acta. 815: 515–518.CrossRefGoogle Scholar
  8. Arnold, K., Herrmann, A., Gawrisch, K., and Pratsch, L., 1985b, Mechanisms of PEG-induced fusion, studia biophysica, 110: 135–141. Arnold, K., Borin, M., and Azizova, 0., 1986 a, Influence of PEG on the partition of a charged spin probe.Coll. Polymer. Sci.t 264: 248-253.Google Scholar
  9. Arnold, K., Lvov, Y. M., Szögyi, M., and Györgyi, S., 1986b, Effect of poly(ethylene oxide)-containing surfactants on membrane-membrane interaction, studia biophyslca, 113: 7–14.Google Scholar
  10. Arnold, K., Zschornig, O., Herold, W. and Barthel, D., 1987, Exclusion of PEG from membrane surfaces, Mol.Cryst.Liqu. Cryst., submitted.Google Scholar
  11. Bäumler, H. and Donath, E., 1987, Does dextran indeed significantly increase the surface potential of human red blood cells, studia biophysica. in press.Google Scholar
  12. Baran, A, A., Solomentseva, I, M., Mank, V. V., and Kurilenko, O. D., 1972, Role of the solution factor in stabilizing disperse systems containing water soluble polymers, Dokl. Akad. Nauk. USSR. 207: 363–366.Google Scholar
  13. Bell, G. I., Dembo, M. and Bongrand, P., 1984, Cell adhesion, competition between nonspecific repulsion on specific binding, Biophys. J., 45: 1051–1064.PubMedCrossRefGoogle Scholar
  14. Blow, A. M. J., Botham, G. M., Fisher, D., Goodall, A. H,, Tilcock, C, P., and Lucy, J, A., 1978, Water and calcium ions in cell fusion induced by PEG, FEBS lett., 94: 305–310.PubMedCrossRefGoogle Scholar
  15. Blow, A. M. J., Botham, G. M., and Lucy, J. A., 1979, Calcium ions and cell fusion, Biochem. J., 182: 555–563.PubMedGoogle Scholar
  16. Boni, L. T., Stewart, T. P., Alderfer, J. L., and Hui, S, W., 1981a, Lipid-PBG interactions: (I) Induction of fusion between liposomes, J. Membrane Biol., 62: 65–70.CrossRefGoogle Scholar
  17. Boni, L, T., Stewart, T. P., Alderfer, J. L., and Hui, S. W., 1981b, Lipid-PEG interactions: (II) Formation of defects in bilayers, J. Membrane Biol., 62: 71–77.CrossRefGoogle Scholar
  18. Boni, L. T., Hah, J. S., Hui, S. V., Mukherjee, P., Ho, J. T., and Jung, C. Y., 1984a, Aggregation and fusion of unilamellar vesicles by poly(ethylene glycol), Biochim. Biophys. Acta. 775: 409–418.PubMedCrossRefGoogle Scholar
  19. Boni, L. T., Stewart, T.P., and Hui, S. W., 1984b, Alterations in phospholipid polymorphism by PEG, J. Membrane Biol., 80: 91–104.CrossRefGoogle Scholar
  20. Boss, W. F., 1983, Poly(ethylene glycol)-induced fusion of plant protoplasts. A spin-label study, Biochim. Biophys. Acta. 730: 111–118.CrossRefGoogle Scholar
  21. Briere, R., Lemaire, H., and Rassat, A., 1965, Nitroxdes XV: Synthese et etude de radicaux libres stables piperidiniques et pyrrolidinique Bull. Soc. Chim. Pr., 11: 3273–3283.Google Scholar
  22. Chirife, J., and Fontan, C, F., 1980, A study of the water activity lowering behaviour of polyethylene glycols in the intermediate moisture range, J, Food Sol., 45: 1717–1719.CrossRefGoogle Scholar
  23. Cullis, P. R., and Hope, M. J., 1978, Effects of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion, Nature (London). 271: 672–674.CrossRefGoogle Scholar
  24. Das, S. and Singhal, G., 1981, Effects of change of water structure on the phase transition of liposomes of DPL, Int. J. Quantum Chem., 20: 495.CrossRefGoogle Scholar
  25. Devaux, P., and Seigneuret, M., 1985, Specifity of lipid-protein interactions as determined by spectroscopic techniques, Biochim. Biophys. Acta. 822: 63–125.PubMedGoogle Scholar
  26. Eriksson, E., and Albertsson, P.-A., 1978, The effect of lipid composition on the partition of liposomes in aqueous two-phase systems, Biochim. Biophys, Acta, 507: 425–432CrossRefGoogle Scholar
  27. Finer, E, G., and Darke, A., 1974, Phospholipid hydration studied by deuteron magnetic resonance spectroscopy, Chem. Phys. Lipids, 12: 1–16.PubMedCrossRefGoogle Scholar
  28. Foster, K, R., Cheever, E., Leonhard, J, B., and Blum, F. D., 1984, Transport properties of polymer solutions, Biophys. J., 45: 975–984.PubMedCrossRefGoogle Scholar
  29. Gawrisch, K., Richter, V., Möps, A., Balgavy, P., Arnold, K. and Klose, G. 1985, The influence of water concentration on the structure of egg yolk phospholipid/water dispersions, studia biophyslca, 108: 5–16.Google Scholar
  30. Gawrisch, K., Stibenz, D., Möps, A., Arnold, K., Linss, V. and Halbhuber, K.-J., 1986, The rate of lateral diffusion of phospholipids in erythrocyte microvesicles, Biochi. Biophys. Acta. 856: 443–447.CrossRefGoogle Scholar
  31. Gawrisch, K., 1986, Molekulare Mechanismen und Membranveranderungen bei der durch Polyethylenglykol induzierten Zellfusion, Thesis B, Leipzig.Google Scholar
  32. Herrmann, A., Pratsch, L., Arnold, K., and Laßmann, G., 1983a, Effect of PEG on the polarity of aqueous solutions and on the structure of vesicle membranes, Biochim. Biophys. Acta., 733: 87–94.CrossRefGoogle Scholar
  33. Herrmann, A., Arnold, K., Pratsch, L., and Laßmann, G., 1983b, Influence of polyethylene glycol on the structure of the erythrocyte membrane: An ESR study, Biomed. Biochim. Acta, 9:1151–1155Google Scholar
  34. Herrmann, A., Arnold, K., and Pratsch, L., 1985, The effect of osmotic pressure of aqueous PEG solutions on red blood cells, Bioscience Rep., 5:689–696CrossRefGoogle Scholar
  35. Herrmann, A., and Müller, P., 1985, Correlation of the internal microviscosity of human erythrocytes to the cell volume and the viscosity of hemoglobin solutions, Biochim. Biophys. Acta.,885: 80–87.CrossRefGoogle Scholar
  36. Herrmann, A., Laßmann, G., Groth, T., Donath, E. and Hillebrecht, B., 1986 Conformational alterations within the glycocalyx of erythrocyte membranes studied by spin labeling, Biochim. Biophys. Acta., 861,111–121PubMedGoogle Scholar
  37. Hoekstra, D., 1982, Role of lipid phase separation and membrane hydration in phospholipid vesicle fusion, Biochemistry. 21: 2833–2840.PubMedCrossRefGoogle Scholar
  38. Honda, K., Maeda, Y., Sasakawa, S., Ohno, H., and Tsuchida, E., 1981a, Activities of cell fusion and lysis of the hybrid type of chemical fusogens (I) structure and function of the promotor of cell fusion, Biochem. Biophys, Res. Commun., 100: 442–447.CrossRefGoogle Scholar
  39. Hui, S. V., Isac, T., Boni, L. T., and Sen, A., 1985, Action of polyethylene glycol on the fusion of human erythrocyte membranes, J. Membrane Biol., 84: 137–146CrossRefGoogle Scholar
  40. Klose, G., Bruckner, S., Bezzabotnov, V, Yu., Borbely, S. and Ostanevich, Yu. M., 1986, Hydration and swelling of the total lipid fraction of egg yolk lecithin and the influence of some additives studied by small angle neutron scattering, Chem. Phys. Lipids. 41, 293–307.CrossRefGoogle Scholar
  41. Knutton, S., 1979, Studies of membrane fusion: III. Fusion of erythrocytes with PEG, J. Cell Sci., 36: 61–72.PubMedGoogle Scholar
  42. Krähling, H., 1980, Untersuchungen zum Mechanismus der PEG-induzierten Zellfusion, Thesis, Stuttgart.Google Scholar
  43. Krähling, H., Schinkewitz, U., Barker., A., and Hiilser, D. F., 1978, Electronmicroscopical and electrophysiological investigations on PEG-induced cell fusion, Cytobiol., 17: 51–61.Google Scholar
  44. Lee, J. C., and Lee, L. L. Y., 1981, Preferential solvent interactions between proteins and PEG, J. Biol. Chem., 256: 625–631.PubMedGoogle Scholar
  45. Le Neveu, D. M., Rand, R. P., and Parsegian, V. A., 1976, Measurement of forces between lecithin bilayers, Nature (London), 259, 601–603.CrossRefGoogle Scholar
  46. Lucy, J, A., 1984, Fusogenic mechanisms, in: “Cell fusion,” Ciba Foundation symposium 103, Pitmans Books, London.Google Scholar
  47. Maggio, B., Ahkong, Q. F., and Lucy, J, A., 1976, PEG, surface potential and cell fusion, Biochem. J., 158: 647–650.PubMedGoogle Scholar
  48. Masszi, G., Koszorous, L., and Lakatos, T., 1986, Investigation of hydration of macromolecules. III. Study of PEG homologues by microwave measurements, Arch. Biochem. Biophys. Hung., 21: 263–281.Google Scholar
  49. McGrath, J. J., 1981, Thermodynamic modelling of membrane damage, in: “Effect of Low Temperatures on Biological Membranes”, G. J. Morris and A., Clarke, eds., Academic Press, London.Google Scholar
  50. McPherson, A., 1985, Use of PEG in the crstallization of macromolecules, in: “Methods of Enzymology”, Vol. 114, Academic Press, New York.Google Scholar
  51. Molynex, P., 1975, Synthetic polymers,in: “Water, a comprehensive treatise”; F. Franks, ed.,Vol. 4, Plenum Publishing Corp., New York, pp. 569–757.Google Scholar
  52. Mouritsen, O. G., and Bloom, M., 1984, Matress model of lipid-protein interactions in membranes, Biophys. J., 46: 142–153CrossRefGoogle Scholar
  53. Ohki, S., 1982, A mechanism of divalent ion-induced PS membrane fusion, Biochim. Biophys. Acta, 689: l–ll.Google Scholar
  54. Ohki, S., 1985, Membrane fusion: Theory and Experiments, studia biophysica, 110: 95–104.Google Scholar
  55. Overbeek, J. Th. G., 1982, Strong and weak points in the interpretation of colloid stability, Adv. Coll. Interf. Sci., 16: 17–30.CrossRefGoogle Scholar
  56. Petrov, A. G., Gawrisch, K., Brecesinski, G., Klose, G., and Möps, A., 1982, Optical detection of phase transitions in simple and mixed lipid-water dispersions, Biochim. Biophys. Acta., 690: 1–7.PubMedCrossRefGoogle Scholar
  57. Pratsch, L., Schwede, I., Meyer, H.W., Herrmann, A. and Laßmann, G., 1987 PEG-mediated rearrangements in erythrocyte membranes, Biochim. Biophys. Acta., submitted.Google Scholar
  58. Rand, R. P., 1981, Interacting phospholipid bilayers: Measured forces and induced structural changes, Ann. Rev. Biophys. Bioeng., 10: 277–314.CrossRefGoogle Scholar
  59. Robinson, J. M., Ross, D. S., Davidson, R. L., and Karnovsky, M. J., 1979, Membrane alterations and other morphological features associated with PEG-induced cell fusion, J. Cell Sci., 40: 63–75.PubMedGoogle Scholar
  60. Saèz, R., Alonso, A., Villena, A., and Goni, F. M. 1982, Detergent like properties of PEG’s in relation to model membranes, FEBS-Lett., 137: 323–327.PubMedCrossRefGoogle Scholar
  61. Surewicz, W. K., 1983, ESR study on the mechanism of PEG-membrane interaction, FEBS lett., 151: 228–231.PubMedCrossRefGoogle Scholar
  62. Tilcock, C. P. S., and Fisher, D., 1979, Interaction of phospholipid membranes with PEG, Biochim. Biophys. Acta., 577: 53–61.Google Scholar
  63. Tilcock, C. P. S., and Fisher, D., 1982, The interaction of phospholipid membranes with poly(ethylene glycol). Vesicle aggregation and lipid exchange, Biochim. Biophys. Acta., 688: 645–652.PubMedCrossRefGoogle Scholar
  64. Tonkonog, L. A., Vasilenko, I. A. and Serebrennikova, G. A., 1982, Formation of aggregates of phospholipids in nonaqueous polar solutions, Doklr Akad, Nauk USSR, 267: 402–405.Google Scholar
  65. Verkleij, A. J., Mombers, C., Gerritsen, W. J., Leunissen-Bijvelt, L., and Cullis, P. R., 1979, Fusion of phospholipid vesicles in association with the appearence of lipidic particles as visualized by freezefracturing, Biochim. Biophys. Acta. 555: 358–361.PubMedCrossRefGoogle Scholar
  66. Volke, F., Arnold, K., and Gawrisch, K., 1982, The effect of hydration on the mobility of phospholipids in the gel state, Chem. Phys. Lipids. 31: 179–189.CrossRefGoogle Scholar
  67. Wojcieszyn, J. W., Schlegel, R. A., Lumley-Sapanski, K., and Jacobson, K. A., 1983, Studies on the mechanism of PEG-mediated cell fusion using fluorescent membrane and cytoplasmic probes, J. Cell Biol., 96: 151–159.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Klaus Arnold
    • 1
  • Andreas Herrmann
    • 3
  • Klaus Gawrisch
    • 2
  • Lothar Pratsch
    • 3
  1. 1.Institute of BiophysicsKarl Marx UniversityLeipzigG.D.R.
  2. 2.Department of PhysicsKarl Marx UniversityLeipzigG.D.R.
  3. 3.Department of Biology of the Humboldt UniversityBerlinG.D.R.

Personalised recommendations