Skip to main content

Osmotic Forces and the Fusion of Biomembranes

  • Chapter
Molecular Mechanisms of Membrane Fusion

Abstract

The possibility that osmotic forces are involved in the molecular mechanisms that govern the fusion of biomembranes has been of wide interest since it was observed that solutions of high osmolarity can inhibit the exocytosis of chromaffin granules in adrenal medullary cells (Hampton and Holz, 1983; Pollard et al., 1984). This work followed that of Finkelstein and his colleagues who had previously demonstrated, in an experimental model for exocytosis, that under appropriate conditions phospholipid vesicles will fuse with a planar phospholipid bilayer under the influence of an osmotic gradient (Cohen et al., 1980). It is, however, less well known that Racker and his co-workers had shown in an earlier interesting paper that unilamellar proteoliposomes containing phosphatidylserine, which ceased to fuse in the presence of calcium ions after the liposomes had grown to diameters of about 100 nm, could be induced to fuse further by an osmotic gradient (internal osmotic pressure higher than external) and form single-walled liposomes with diameters exceeding 1 micron as well as multilayered vesicles (Miller et al., 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahkong, Q. F., Fisher, D., Tampion, W., and Lucy, J. A., 1973a, The fusion of erythrocytes by fatty acids, esters, retinol and α-tocopherol, Biochem. J., 136:147.

    CAS  Google Scholar 

  • Ahkong, Q.F., Cramp, F.C, Fisher, D., Howell, J.I., Tampion, W., Verrinder, M., and Lucy, J.A., 1973b, Chemically-induced and thermally-induced cell fusion: lipid-lipid interactions, Nature New Biology, 242:215.

    Article  CAS  Google Scholar 

  • Ahkong, Q.P., Howell, J.I., Tampion, W., and Lucy, J.A., 1974, The fusion of hen erythrocytes by lipid-soluble and surface-active immunological adjuvants, FEBS Lett., 41:206.

    Article  PubMed  CAS  Google Scholar 

  • Ahkong, Q.P., Tampion, W., and Lucy, J.A., 1975, Promotion of cell fusion by divalent cation ionophores, Nature Lond., 256:208.

    Article  PubMed  CAS  Google Scholar 

  • Ahkong, Q.F., Botham, G.M., Woodward, A.W., and Lucy, J.A, 1980, Calciumactivated thiol-proteinase activity in the fusion of rat erythrocytes induced by benzyl alcohol, Biochem. J., 192:829.

    PubMed  CAS  Google Scholar 

  • Ahkong, Q.F., and Lucy, J.A., 1986, Osmotic forces in artificially induced cell fusion, Biochem. Biophys. Acta, 858:206.

    Article  PubMed  CAS  Google Scholar 

  • Ahkong, Q.P., Desmazes, J-P., Georgescauld, D., and Lucy, J.A., 1987, Unpublished observations.

    Google Scholar 

  • Aldwinkle, T.J., Ahkong, Q.P., Bangham, A.D., Fisher, D., and Lucy, J.A., 1982, Effects of poly(ethylene glycol) on liposomes and erythrocytes. Permeability changes and membrane fusion, Biochim. Biophys. Acta, 689:548.

    Article  Google Scholar 

  • Allan, D., and Michell, R.H., 1978, A calcium-activated polyphosphoinositide phosphodiesterase in the plasma membrane of human and rabbit erythrocytes, Biochim. Biophys. Acta, 508:277.

    Article  PubMed  CAS  Google Scholar 

  • Bangham, A.D., and Home, R.W., 1964, Negative staining of phospholipids and their structural modification by surface active agents as observed in the electron microscope, J. Mol. Biol., 8:660.

    Article  PubMed  CAS  Google Scholar 

  • Boni, L.T., Stewart, T.P., Alderfer, J.L., and Hui, S.W., 1981, Lipidpolyethylene glycol interactions: I. Induction of fusion between liposomes, J. Membrane Biol., 62:65.

    Article  CAS  Google Scholar 

  • Boni, L.T., Stewart, T.P., and Hui, S.W., 1984, Alterations in phospholipid polymorphism by polyethylene glycol, J. Membrane Biol., 80:91.

    Article  CAS  Google Scholar 

  • Boss, W.F., 1983, Poly(ethylene glycol)-induced fusion of plant protoplasts, Biochim. Biophys. Acta, 730:111.

    Article  CAS  Google Scholar 

  • Brown, S.M., Ahkong, Q.F., and Lucy, J.A., 1987, Osmotic pressure and the electrofusion of myeloma cells, Biochem. Soc Trans., 14,1129.

    Google Scholar 

  • Bruckdorfer, K.R., Cramp, F.C, Goodall, A.H., Verrinder, M., and Lucy, J.A., 1974, Fusion of mouse fibroblasts with oleylamine, J. Cell. Sci., 15:185.

    PubMed  CAS  Google Scholar 

  • Cohen, F.S., Zimraerberg, J., and Finkelstein, A, 1980, Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II Incorporation of vesicular membrane marker into the planar membrane, J. Gen. Physiol., 75:251.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, F.S., Akabas, M.H., Zimmerberg, J., and Finkelstein, A,, 1984, Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes, J. Cell. Biol., 98:1054.

    Article  PubMed  CAS  Google Scholar 

  • Cullis, P.R., and Hope, M.J., 1978, Effects of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion, Nature Lond., 271:672.

    Article  PubMed  CAS  Google Scholar 

  • Donath, E., and Arndt, R., 1984, Electric-field-induced fusion of enzyme treated human red cells: kinetics of intermembrane protein exchange, Gen. Physiol. Biophys., 3:239.

    PubMed  CAS  Google Scholar 

  • Elgsaeter, A., Stokke, B.T., Mikkelsen, A., and Branton, D., 1986, The molecular basis of erythrocyte shape, Science, 23:1217.

    Article  Google Scholar 

  • Fisher, L.R., and Parker, N.S., 1984, Osmotic control of bilayer fusion, Biophys. J., 46:253.

    Article  PubMed  CAS  Google Scholar 

  • Glaser, T., and Kosower, N.S., 1986, Calpain-Calpastatin and fusion. Fusibility of erythrocytes is determined by a protease-protease inhibitor (calpain-calpastatin) balance, FEBS Lett., 206::115.

    Article  PubMed  CAS  Google Scholar 

  • Goodall, H., and Johnson, M.H., 1982, Use of carboxyfluorescein diacetate to study formation of permeable channels between mouse blastomers, Nature Lond., 295:524.

    Article  PubMed  CAS  Google Scholar 

  • Hampton, R.Y., and Holz, R.W., 1983, Effects of changes in osmolarity on the stability and function of cultured chromaffin cells and the possible role of osmotic forces in exocytosis, J. Cell Biol., 96:1082.

    Article  PubMed  CAS  Google Scholar 

  • Heubusch, P., Jung, C.Y., and Green, P.A., 1985, The osmotic response of human erythrocytes and the membrane cytoskeleton, J. Cell Physiol, 122:266.

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra, D., de Boer, T., Klappe, K., and Wilschut, J., 1984, Fluorescence method for measuring the kinetics of fusion between biological membranes, Biochemistry, 23:5675.

    Article  PubMed  CAS  Google Scholar 

  • Honda, K., Maeda, Y., Sasakawa, S., Ohno, H., and Tsuchida, E., 1981, The components contained in polyethylene glycol of commercial grade PEG-6,000) as cell fusogen, Biochem. Biophys. Res. Commun., 101:165.

    Article  PubMed  CAS  Google Scholar 

  • Horn, R.G., 1984, Direct measurement of the force between two lipid bilayers and observation of their fusion, Biochim. Biophys. Acta, 778::224.

    Article  CAS  Google Scholar 

  • Howell, J.I., Fisher, D., Goodall, A.H., Verrinder, M., and Lucy, J.A., 1973, Interactions of membrane phospholipids with fusogenic lipids, Biochim. Biophys. Acta, 332:1.

    Google Scholar 

  • Huang, S.K., and Hui, S.W., 1986, Chemical co-treatments and intramembrane particle patching in the poly(ethylene glycol)-induced fusion of turkey and human erythrocytes, Biochim. Biophys. Acta, 860:539.

    Article  PubMed  CAS  Google Scholar 

  • Hui, S.W., Isac, T., Boni, L.T., and Sen, A., 1985, Action of polyethylene glycol on the fusion of human erythrocyte membranes, J. Membrane Biol., 84:137.

    Article  CAS  Google Scholar 

  • Knutton, S., 1979, Studies of membrane fusion. III. Fusion of erythrocyteswith polyethylene glycol, J. Cell. Sci., 36:61.

    PubMed  CAS  Google Scholar 

  • Kosower, E.M., Kosower, N.S., and Wegman, P., 1977, Membrane mobility agents. IV. The mechanism of particle-cell and cell-cell fusion, Biochim. Biophys, Acta, 471:311.

    Article  CAS  Google Scholar 

  • Kosower, N.S., Wegman, P.O., Neiman, T., and Kosower, E.M., 1978, Membrane mobility agents. V. Genetic variability in the fusibility of hen red cells, Exp. Cell Res., 166:454.

    Article  Google Scholar 

  • Kosower, N.S., Glaser, T., and Kosower, E.M., 1983, Membrane-mobility agent-promoted fusion of erythrocytes: fusibility is correlated with attack by calcium-activated cytoplasmic proteases on membrane proteins, Proc. Natl. Acad. Sci., USA, 80:7542.

    Article  PubMed  CAS  Google Scholar 

  • Krähling, H., 1981, Investigations on polyethylene glycol-induced cell fusion — freeze fracture observations Acta histochemica, Suppl., 23:219.

    Google Scholar 

  • Lang, R.D.A., Wickenden, C., Wynne, J., and Lucy, J.A., 1984, Proteolysis of ankyrin and of band 3 in chemically-induced cell fusion: Ca2+ is not mandatory for fusion, Biochem. J., 218:295.

    PubMed  CAS  Google Scholar 

  • Lucy, J.A., 1970, The fusion of biological membranes, Nature, 227:814.

    Article  Google Scholar 

  • Lucy, J.A., 1973, The chemically-induced fusion of cells, in: Membranemediated information, Vol. 2, P.W, Kent, ed., Medical and Technical Publishing Co., Lancaster.

    Google Scholar 

  • Lucy, J.A., 1986, Salient features of artificially induced cell fusion, Biochem. Soc. Trans., 14:241.

    Google Scholar 

  • Lucy, J.A., and Ahkong, Q.P., 1986, An osmotic model for the fusion of biological membranes, FEBS Lett., 199:1.

    Article  PubMed  CAS  Google Scholar 

  • Maggio, B., Cumar, F.A., and Caputto, R., 1978, Induction of membrane fusion by polysialogangliosides. FEBS Lett., 90:149.

    Article  PubMed  CAS  Google Scholar 

  • Markin, V.S., Kozlov, M.M., and Borovjagin, V.L., 1984, On the theory of membrane fusion. The stalk mechanism, Gen. Physiol. Biophys., 5:361.

    Google Scholar 

  • Melikyan, G.B., Abidor, I.G., Chernomordik, L.V., and Chailakhyan, L.M., 1983, Electrostimulated fusion and fission of bilayer lipid membranes, Biochim. Biophys. Acta, 730:395.

    Article  CAS  Google Scholar 

  • Miller, C., Arvan, P., Telford, J.N., and Racker, E., 1976, Ca++-induced fusion of proteoliposomes: dependence on transmembrane osmotic gradient, J. Membrane Biol., 30:271.

    Article  CAS  Google Scholar 

  • Neher, E., 1974, Asymmetric membranes resulting from the fusion of two black lipid bilayers, Biochim. Biophys. Acta, 373:327.

    Article  PubMed  CAS  Google Scholar 

  • Parente, R.A., and Lentz, B.R., 1986, Rate and extent of poly(ethylene glycol)-induced large vesicle fusion monitored by bilayer and internal contents mixing, Biochemistry, 25:6678.

    Article  PubMed  CAS  Google Scholar 

  • Parsegian, V.A., Rand, R.P., and Gingell, D., 1984, Lessons for the study of membrane fusion from membrane interactions in phospholipid systems, in: Cell Fusion, CIBA Symposium No. 103, D. Evered and J. Whelan, eds., Pitman, London.

    Google Scholar 

  • Pollard, H.B., Pazoles, C.J., Creutz, C.E., Scott, J.H., Zinder, O., and Hotchkiss, A., 1984, An osmotic mechanism for exocytosis from dissociated chromaffin cells, J. Biol. Chem., 259:1114.

    PubMed  CAS  Google Scholar 

  • Ponder, E. 1955, Red cell structure and its breakdown, Springer-Verlag, Vienna.

    Google Scholar 

  • Quirk, S.J., Ahkong., Q.F., Botham, G.M., Vos, J., and Lucy, J.A., 1978, Membrane proteins in human erythrocytes during cell fusion induced by oleoylglycerol, Biochem. J. 176:159.

    PubMed  CAS  Google Scholar 

  • Robinson, J.M., Roos, D.S., Davidson, R.L., and Karnovsky, M.J., 1979, Membrane alterations and other morphological features associated with polyethylene glycol-induced cell fusion, J. Cell Sci., 40:63.

    PubMed  CAS  Google Scholar 

  • Schindler, M., Koppel, D.E., and Sheetz, M.P., 1980, Modulation of membrane protein lateral mobility by polyphosphates and polyamines, Proc. Natl. Acad. Sci. USA, 77:1457.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C.L., Ahkong, Q.P., Fisher, D., and Lucy, J.A., 1982, Is purified poly(ethylene glycol) able to induce cell fusion? Biochim. Biophys. Acta, 692:109.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D.K., and Palek, J., 1982, Modulation of lateral mobility of band 3 in the red cell membrane by oxidative cross-linking of spectrin, Nature Lond., 297:424.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, A.E., 1984, Characterization of electric field-induced fusion of erythrocyte ghost membranes, J. Cell. Biol., 99:1989.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, P., Limbrick, A.R., and Allan, D., 1983, Limited breakdown of cytoskeletal proteins by an endogenous protease controls Ca2+-induced membrane fusion events in chicken erythrocytes. Biochim. Biophys. Acta, 730:351.

    Article  PubMed  CAS  Google Scholar 

  • Vienken, J., and Zimmermann, U., 1985, An improved electrofusion technique for production of mouse hybridoma cells, FEBS Lett., 182:278.

    Article  PubMed  CAS  Google Scholar 

  • Verkleij, A.J., van Echteld, C.J.A., Gerritsen, W.J., Cullis, P.R., and de Kruijff, B., 1980, The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonal hII transitions, Biochim. Biophys. Acta, 600:620.

    Article  PubMed  CAS  Google Scholar 

  • Vos, J., Ahkong, Q.F., Botham, G.M., Quirk, S.J., and Lucy, J.A., 1976, Changes in the distribution of intramembranous particles in hen erythrocytes during cell fusion induced by the bivalent-cation ionophore A23187, Biochem. J., 158:651.

    PubMed  CAS  Google Scholar 

  • Wojcieszyn, J.W., Schlegel, R.A., Lumley-Sapanski, K., and Jacobson, K.A., 1983, Studies on the mechanism of polyethylene glycol-mediated cell fusion using fluorescent membrane and cytoplasmic probes, J. Cell. Biol., 96:151.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerberg, J., Cohen, F.S., and Finkelstein, A., 1980, Micromolar Ca2+ stimulates fusion of lipid vesicles with planar bilayers containing a calcium-binding protein, Science, 210:906.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, U., 1982, Electric field-mediated fusion and related electrical phenomena, Biochim. Biophys. Acta, 694:227.

    PubMed  CAS  Google Scholar 

  • Zimmermann, U., Pilwat, G., Pequeux, A,, and Gilles, R., 1980, Electromechanical properties of human erythrocyte membranes: the pressuredependence of potassium permeability, J. Membrane Biol., 54:103.

    Article  CAS  Google Scholar 

  • Zimmermann, U., Pilwat, G., and Richter, H-P., 1981, Electric-fieldstimulated fusion: increased field stability of cells induced by pronase, Naturwissenschaften, 68: S577.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, U., and Vienken, J., Electric field-induced cell-to-cell fusion, J. Membrane Biol., 67:165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Lucy, J.A., Ahkong, Q.F. (1988). Osmotic Forces and the Fusion of Biomembranes. In: Ohki, S., Doyle, D., Flanagan, T.D., Hui, S.W., Mayhew, E. (eds) Molecular Mechanisms of Membrane Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1659-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1659-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8921-0

  • Online ISBN: 978-1-4613-1659-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics