Skip to main content

Calcium-Induced Membrane Fusion: From Liposomes to Cellular Membranes

  • Chapter

Abstract

Although Ca2+ is involved in many biological membrane fusion phenomena, the mechanism of its action is not well understood. It could participate directly in the fusion reaction by interacting with phospholipids; it could activate particular enzymes; it could induce a conformational change in a fusogenic protein; or it could merely initiate a cascade of reactions which eventually mediate fusion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baggiolini, M. and Dewald, B., 1984, Exocytosis by neutrophils, in:“Regulation of Leukocyte Function,” R. Snyderman, ed., pp. 221–246, Plenum Press, New York.

    Google Scholar 

  • Bainton, D.F., 1973, Sequential degranulation of the two types of polymorphonuclear leukocyte granules during phagocytosis of microorganisms, J. Cell. Biol., 58:249.

    Article  PubMed  CAS  Google Scholar 

  • Baker, P.F., 1987, Exocytosis in electropermeabilized cells: Clues to mechanism and physiological control, in: “Membrane Fusion in Fertilization, Cellular Transport and Viral Infection,” N. Düzgünes, and F. Bronner, eds., Academic Press, New York (in press).

    Google Scholar 

  • Baker, P.F., Knight, D.E, and Whitaker, M.G., 1980, Calcium and the control of exocytosis, in: “Calcium-Binding Proteins: Structure and Function,” F.L. Siegel, E. Carafoli, R.H. Kretsinger, D.H. MacLennan and R.H. Wasserman, eds., pp. 47–55, Elsevier/North Holland, New York.

    Google Scholar 

  • Baker, P.F., and Knight, D.E., 1984, Calcium control of exocytosis in bovine adrenal medullary cells, Trends. Neurosci. 7:120–126.

    Article  CAS  Google Scholar 

  • Bangham, A.D., Standish, M.M. and Watkins, J.C., 1965, Diffusion of univalent ions across lamellae of swollen phospholipids, J. Mol. Biol., 13:238.

    Article  PubMed  CAS  Google Scholar 

  • Bearer, E.L., Düzgünes D., Friend, D.S. and Papahadjopoulos, D., 1982, Fusion of phospholipid vesicles arrested by quick freezing. The question of lipidic particles as intermediates in membrane fusion, Biochim. Biophys. Acta, 693:93.

    Article  PubMed  CAS  Google Scholar 

  • Bentwood, B.J. and Henson, P.M., 1980, The sequential release of granule constituents from human neutrophils, J. Immunol., 124:855.

    PubMed  CAS  Google Scholar 

  • Bentz, J. and Düzgüneş, N., 1985, Fusogenic capacities of divalent cations and the effect of liposome size, Biochemistry, 24:5436.

    Article  PubMed  CAS  Google Scholar 

  • Bentz, J., Nir, S. and Wilschut, J., 1983a, Mass action kinetics of vesicle aggregation and fusion, Colloids and Surfaces, 6:333.

    Article  CAS  Google Scholar 

  • Bentz, J., Düzgüneş, N. and Nir, S., 1983b, Kinetics of divalent cation induced fusion of phosphatidylserine vesicles: Correlation between fusogenic capacities and binding affinities, Biochemistry, 22:3320.

    Article  CAS  Google Scholar 

  • Bentz, J., Düzgüneş, N. and Nir, S., 1985, Temperature dependence of divalent cation induced fusion of phosphatidylserine liposomes: Evaluation of the kinetic rate constants, Biochemistry, 24:1064.

    Article  PubMed  CAS  Google Scholar 

  • Creutz, C.E., 1981, cis-unsaturated fatty acids induce the fusion of chromaffin granules aggregated by synexin, J. Cell Biol., 91:247.

    Article  PubMed  CAS  Google Scholar 

  • Creutz, C.E. and Sterner, D.C., 1983, Calcium dependence of the binding of synexin to isolated chromaffin granules, Biochem. Biophys. Res. Commun., 114:355.

    Article  PubMed  CAS  Google Scholar 

  • Creutz, C.E., Pazoles, C.J., and Pollard, H.B., 1978, Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of isolated chromaffin granules, J. BioI. Chem., 253:2858.

    CAS  Google Scholar 

  • Creutz C.E., Pazoles, C.J., and Pollard, H.B., 1979, Self-association of synexin in the presence of calcium: Correlation with synexin-induced membrane fusion and examination of the structure of synexin aggregates. J. BioI. Chem., 254:553.

    CAS  Google Scholar 

  • Creutz, C.E., Dowling, L.G., Sando, J.J., Villar-Palasi, C., Whipple, J.H., and Zaks, W.J., 1983, Characterization of the chromobindins: Soluble proteins that bind to the chromaffin granule membrane in the presence of Ca2+, J. BioI. Chem., 258:14664.

    CAS  Google Scholar 

  • Creutz, C.E., Zaks, w.J., Hamman, H.C. and Martin, W.H., 1987, The roles of Ca2+-dependent membrane-binding proteins in the regulation and mechanism of exocytosis, in: “Cell Fusion,” A.E. Sowers, ed., pp. 45–68, Plenum Press, New York.

    Google Scholar 

  • Cullis, P.R. and Hope, M.J., 1978, Effects of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion, Nature (Lond.), 271:672.

    Article  CAS  Google Scholar 

  • Cullis, P.R., and de Kruijff, B., 1979, Lipid polymorphism and the functional roles of lipids in biological membranes, Biochim. Biophys. Acta, 559:399.

    PubMed  CAS  Google Scholar 

  • Cullis, P.R. and Verkleij, A.J., 1979, Modulation of membrane structure by Ca2+ and dibucaine as detected by 31P NMR, Biochim. Biophys. Acta, 552:546.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, G., Ekerdt, R. and Gratzl, M., 1979, Models for exocytotic membrane fusion, Symp. Soc. Exp. Biol., 33:349.

    PubMed  CAS  Google Scholar 

  • Dewald, B., Bretz, U. and Baggiolini, M., 1982, Release of gelatinase from a novel secretory compartment of human neutrophils, J. Clin. Invest., 70:518.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, L.A. and Holz, R.W., 1983, Catecholamine secretion from digitonintreated adrenal medullary chromaffin cells, J. BioI. Chem., 248:4989.

    Google Scholar 

  • Düzgüneş, N., 1985, Membrane fusion, in: “Subcell-;:ilar Biochemistry,” Vol. 11, D.B. Roodyn, ed., pp. 195–286 Plenum Press, New York.

    Google Scholar 

  • Düzgüneş, N., 1987, Cholesterol and membrane fusion, in: “Cholesterol in Biological Systems,” P.L. Yeagle, ed., CRC Press, Boca Raton, Florida (in press).

    Google Scholar 

  • Düzgüneş, N. and Papahadjopoulos, D., 1983, Ionotropic effects on phospholipid membranes: Calcium-magnesium specificity in binding, fluidity, and fusion, in: “Membrane Fluidity in Biology”, Vol. 2, R.C. Aloia, ed., pp. 187–213, Academic Press, New York.

    Google Scholar 

  • Düzgüneş, N. and Bentz, J., 1987, Fluorescence assays for membrane fusion, in: “Spectroscopic Membrane Probes,” L.M. Loew, ed., CRC Press, Boca Raton, Florida (in press).

    Google Scholar 

  • Düzgüneş, N., Hong, K. and Papahadjopoulos, D., 1980, Membrane fusion: The involvement of phospholipids, proteins and calcium binding, in: “Calcium-Binding Proteins: Structure and Function,” F.L. Siegel, E. Carafoli, R.H. Kretsinger, D.H. MacLennan and R.H. Wasserman, eds., pp. 17–22, Elsevier/North Holland, New York.

    Google Scholar 

  • Düzgüneş, N., Nir, S., Wilschut, J., Bentz, J., Newton, C., Portis, A. and Papahadjopoulos, D., 1981a, Calcium-and magnesium-induced fusion of mixed phosphatidylserine /phosphatidylcholine vesicles: Effect of ion binding, J. Memb. Biol., 59:115.

    Google Scholar 

  • Düzgüneş, N., Wilschut, J., Fraley, R., and Papahadjopoulos, D., 1981b, Studies on the mechanism of membrane fusion: Role of head-group composition in calcium-and magnesium-induced fusion of mixed phospholipid vesicles, Biochim. Biophys. Acta, 642:182.

    Article  PubMed  Google Scholar 

  • Düzgüneş, N., Paiement, J., Freeman, K.B., Lopez, N.G., Wilschut, J. and Papahadjopoulos, D., 1984a, Modulation of membrane fusion by ionotropic and thermotropic phase transitions, Biochemistry, 23:3486.

    Article  PubMed  Google Scholar 

  • Düzgüneş, N., Hoekstra, D., Hong, K. and Papahadjopoulos, D., 1984b, Lectins facilitate calcium-induced fusion of phospholipid vesiclces containing glycosphingolipids, FEBS Lett., 173:80.

    Article  PubMed  Google Scholar 

  • Düzgüneş, N., Wilschut, J. and Papahadjopoulos, D, 1985, Control of membrane fusion by divalent cations, phospholipid head-groups and proteins, in: “Physical Methods on Biological Membranes and their Model Systems:” F. Conti, W.E. Blumberg, J. DeGier, and F. Pocchiari eds., pp. 193–218, Plenum Press, New York.

    Google Scholar 

  • Düzgüneş, N., Hong, K., Baldwin, P.A., Bentz, J., Nir, S., Papahadjopoulos, D., 1987a, Fusion of phospholipid vesicles induced by divalent cations and protons. Modulation by phase transitions, free fatty acids, monovalent cations, and polyamines, in: “Cell Fusion,” A.E. Sowers, ed., pp. 241–267, Plenum Press, New York.

    Google Scholar 

  • Düzgüneş, N., Allen, T.M., Fedor, J. and Papahadjopoulos, D., 1987b, Lipid mixing during membrane aggregation and fusion. Why fusion assays disagree, Biochemistry (submitted).

    Google Scholar 

  • Ekerdt, R. and Papahadjopoulos, D., 1982, Intermembrane contact affects calcium binding to phospholipid vesicles, Proc. Natl. Acad. Sci. USA, 79:2273.

    Article  PubMed  CAS  Google Scholar 

  • Ekerdt, R., Dahl, G., and Gratzl, M., 1981, Membrane fusion of secretory vesicles and liposomes. Two different types of fusion, Biochim. Biophys. Acta 646:10–22.

    Article  PubMed  CAS  Google Scholar 

  • Ellens, H., Bentz, J. and Szoka, F. C., 1985, H+-and Ca2+-induced fusion and destabilization of liposomes, Biochemistry, 24:3099.

    Article  PubMed  CAS  Google Scholar 

  • Ernst, J.D., Meers, P., Hong, K., Düzgüneş, N., Papahadjopoulos, D., and Goldstein, I.M., 1986, Human polymorphonuclear leukocytes contain synexin, a calcium-binding protein that mediates membrane fusion, Clin. Res., 34:722A.

    Google Scholar 

  • Estensen, R.D., White, J.G. and Holmes, B., 1974, Specific degranulation of human polymorphonuclear leukocytes, Nature (Lond.), 248:347.

    Article  CAS  Google Scholar 

  • Feigenson, G.W., 1986, On the nature of calcium ion binding between phosphatidylserine lamellae, Biochemistry, 25:5819.

    Article  PubMed  CAS  Google Scholar 

  • Fraley, R., Wilschut, J., Düzgüneş, N., Smith, C. and Papahadjopoulos, D., 1980, Studies on the mechanism of membrane fusion: The role of phosphate in promoting calcium-induced fusion of phospholipid vesicles, Biochemistry, 19:6021.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, I.M., 1984, Neutrophil degranulation, in: “Regulation of Leukocyte Function,” R. Snyderman, ed., pp.189–219, Plenum Press, New York.

    Google Scholar 

  • Goldstein, I.M., Horn, J.K., Kaplan, H.B. and Weissmann, G., 1974, Calcium-induced lysozyme secretion from human polymorphonuclear leukocytes, Biochem. Biophys. Res. Commun., 60:807.

    Article  PubMed  CAS  Google Scholar 

  • Gratzl, M., Schudt, C., Ekerdt, R., and Dahl, G., 1980, Fusion of isolated biological membranes: A tool to investigate basic processes of exocytosis and cell-cell fusion, in: Membrane Structure and Function, Vol. 3 (E.E. Bittar, ed.), pp. 59–92, Wiley, New York.

    Google Scholar 

  • Gruner, S.M., Cullis, P.R., Hope, M.J. and Tilcock, C.P.S., Lipid polymorphism. The molecular basis of nonbilayer phases, Ann. Rev. Biophys. Biophys. Chem., 14:211.

    Google Scholar 

  • Hoekstra, D. and Düzgüneş, N., 1986, Ricinus communis agglutinin-mediated agglutination and fusion of glycolipid-containing phospholipid vesicles. Effect of carbohydrate headgroup size, calcium ions and spermine, Biochemistry, 25:1321.

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra, D., de Boer, T., Klappe, K. and Wilschut, J., 1984, Fluorescence method for measuring the kinetics of fusion between biological membranes, Biochemistry, 23:5675.

    Article  PubMed  CAS  Google Scholar 

  • Hong, K., Düzgüneş, N., and Papahadjopoulos, D., 1981, Role of synexin in membrane fusion, J. Biol. Chem., 256:3651.

    Google Scholar 

  • Hong, K., Düzgüneş, N., and Papahadjopoulos, D., 1982a, Modulation of membrane fusion by calcium-binding proteins, Biophys. J., 37:296.

    Google Scholar 

  • Hong, K., Düzgüneş, N., Ekerdt, R., and Papahadjopoulos, D., 1982b, Synexin facilitates fusion of specific phospholipid vesicles at divalent cation concentrations found intracellularly, Proc. Natl. Acad. Sci. USA, 70:4942.

    Google Scholar 

  • Hong, K., Ekerdt, R., Bentz, J., Nir, S. and Papahadjopoulos, D., 1983, Kinetics of synexin-facilitated membrane fusion, Biophys. J., 41:31a.

    Google Scholar 

  • Hong, K., Düzgüneş, N., Meers, P.R. and Papahadjopoulos, D., 1987, Protein modulation of liposome fusion, in: “Cell Fusion,” A.E. Sowers, ed., pp. 269–284, Plenum Press, New York.

    Google Scholar 

  • Hope, M.J., Walker, D.C. and Cullis, P.R., 1983, Calcium and pH-induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: A freezefracture study, Biochem. Biophys. Res. Commun., 110:15.

    Article  PubMed  CAS  Google Scholar 

  • Lew, D.P., Monod, A., Waldvogel, F.A., Dewald, B., Baggiolini, M. and Pozzan, T., 1986, Quantitative analysis of the cytosolic free calcium dependency of exocytosis from three subcellular compartments in intact human neutrophils, J. Cell Biol., 102:2197.

    Article  PubMed  CAS  Google Scholar 

  • Meers, P., Ernst, J.D., Düzgüneş, N., Hong, K., Fedor, J., Goldstein, I.M. and Papahadjopoulos, D., 1987a, Synexin-like proteins from human polymorphonuclear leukocytes. Identification and characterization of granule-aggregating and membrane-fusing activities, J. Biol. Chem., 262:7850.

    PubMed  CAS  Google Scholar 

  • Meers, P., Hong, K. and Papahadjopoulos, D., 1987b, Studies on the binding of synexin to phospholipid vesicles, in: “Proceeedings of the Fifth International Symposium on Calcium Binding Proteins in Health and Disease,” A.W. Norman, T.C. Vanaman and A.R. Means, eds., Academic Press, New York (in press).

    Google Scholar 

  • Meers, P., Bentz, J., Alford, D., Nir, S., Papahadjopoulos, D. and Hong, K., 1987c, Kinetic mechanism of the modulation of liposome fusion by synexin (in preparation).

    Google Scholar 

  • Michell, R.H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta, 415:81.

    PubMed  CAS  Google Scholar 

  • Michell, R.H., Kirk, C.J., Jones, L.M., Downes, C.P. and Creba, J.A., 1981, The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: defined characteristics and unanswered questions, Phil. Trans. R. Soc. Lond..B., 296:123.

    Article  CAS  Google Scholar 

  • Morris, S.J., Hughes, J.M.X., and Whittaker, V.P., 1982, Purification and mode of action of synexin: A protein enhancing calcium-induced membrane aggregation, J. Neurochem., 39:529.

    Article  PubMed  CAS  Google Scholar 

  • Nir, S., 1984, A model for cation adsorption in closed systems: Application to calcium binding to phospholipid vesicles, J. Coll. Interface Sci., 102:313.

    Article  CAS  Google Scholar 

  • Nir, S., Bentz, J. and Portis, A.R., Jr., 1980a, Effect of cation concentrations and temperature on the rates of aggregation of acidic phospholipid vesicles. Application to fusion, Adv. Chem. Ser., 188:75.

    Article  CAS  Google Scholar 

  • Nir, S., Bentz, J., and Wilschut, J., 1980b, Mass action kinetics of phosphatidylserine vesicle fusion as monitored by coalescence of internal vesicle volumes, Biochemistry, 19:6030.

    Article  PubMed  CAS  Google Scholar 

  • Nir, S., Wilschut, J. and Bentz, J., 1982, The rate of fusion of phospholipid vesicles and the role of bilayer curvature, Biochim. Biophys. Acta, 688:275.

    Article  PubMed  CAS  Google Scholar 

  • Nir, S., Bentz, J., Wilschut, J. and Düzgüneş, N., 1983a, Aggregation and fusion of phospholipid vesicles, Prog. Surface Sci., 13:1.

    Article  CAS  Google Scholar 

  • Nir, S., Düzgüneş, N. and Bentz, J., 1983b, Binding of monovalent cations to phosphatidylserine and modulation of Ca2+-and Mg2+-induced vesicle fusion, Biochim. Biophys. Acta, 735:160.

    Article  PubMed  CAS  Google Scholar 

  • Ohki, S., Düzgüneş, N. and Leonards, K., 1982, Phospholipid vesicle aggregation: Effect of monovalent and divalent ions, Biochemistry, 21:2127.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, S.-I., 1987, Fusion of viral envelopes with cellular membranes, in: “Membrane Fusion in Fertilization, Cellular Transport and Viral Infection,” N. Düzgünes and F. Bronner, eds., Academic Press, New York (in press).

    Google Scholar 

  • Papahadjopoulos, D. and Bangham, A.D., 1966, Biophysical properties of phospholipids. II. Permeability of phosphatidylserine liquid crystals to univalent ions, Biochim. Biophys. Acta, 126:185.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Poste, G., Schaeffer, B.E. and Vail, W.J., 1974, Membrane fusion and molecular segregation in phospholipid vesicles, Biochim. Biophys. Acta, 352:10.

    Google Scholar 

  • Papahadjopoulos, D., Vail, W.J., Pangborn, W.A. and Poste, G., 1976, Studies on membrane fusion. II. Induction of fusion in pure phospholipid membranes by calcium and other divalent metals, Biochim. Biophys. Acta, 448:265.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Vail, W.J., Newton, C., Nir, S., Jacobson, K., Poste, G. and Lazo, R., 1977, Studies on membrane fusion. III. The role of calcium-induced phase changes, Biochim. Biophys. Acta, 465:579.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Poste, G., and Vail, W.J., 1979, Studies on membrane fusion with natural and model membranes, Methods Memb. Biol., 10:1.

    CAS  Google Scholar 

  • Pollard, H.B. and Scott, J.H., 1982, Synhibin: A new calcium-dependent membrane-binding protein that inhibits synexin-induced chromaffin granule aggregation and fusion, FEBS Lett., 150:201.

    Article  PubMed  CAS  Google Scholar 

  • Portis, A., Newton, C, Pangborn, W. and Papahadjopoulos, D., 1979, Studies on-the mechanism of membrane fusion: Evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin, Biochemistry, 18:780.

    Article  PubMed  CAS  Google Scholar 

  • Rehfeld, S.J., Düzgüneş, N., Newton, C., Papahadjopoulos, D. and Eatough, D.J., 1981, The exothermic reaction of calcium with unilamellar phosphatidylserine vesicles: Titration microcalorimetry, FEBS Lett., 123:249.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, J., Düzgüneş, N. and Kayalar, C, 1983, Comparison of two liposome fusion assays monitoring the intermixing of aqueous contents and of membrane components, Biochim. Biophys. Acta, 735:173.

    Article  PubMed  CAS  Google Scholar 

  • Schuber, F., Hong, K., Düzgüneş, N. and Papahadjopoulos, D., 1983, Polyamines as modulators of membrane fusion: Aggregation and fusion of liposomes, Biochemistry, 22:6134.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, D.P., 1984, Inverted micellar structures in bilayer membranes: Formation rates and half-lives, Biophys. J., 45:399.

    Article  PubMed  CAS  Google Scholar 

  • Stenson, W.F. and Parker, C.W., 1979, Metabolism of arachidonic acid in ionophore-stimulated neutrophils, J. Clin. Invest., 64:1457.

    Article  PubMed  CAS  Google Scholar 

  • Struck, D. K., Hoekstra, D., and Pagano, R. E., 1981, Use of resonance energy transfer to monitor membrane fusion, Biochemistry, 20:4093.

    Article  PubMed  CAS  Google Scholar 

  • Südhof, T.C., Walker, J.H., and Obrocki, J., 1982, Calelectrin selfaggregates and promotes membrane aggregation in the presence of calcium, EMBO J., 1:1167.

    PubMed  Google Scholar 

  • Südhof, T.C., Ebbecke, M., Walker, J.H., Fritsche, U., and Boustead, C, 1984, Isolation of mammalian calelectrins: A new class of ubiquitous Ca2+-regulated proteins, Biochemistry, 23:1103.

    Article  PubMed  Google Scholar 

  • Sundler, R., 1984, Role of phospholipid head group structure and polarity in the control of membrane fusion, Biomembranes, 12:563.

    CAS  Google Scholar 

  • Sundler, R. and Papahadjopoulos, D., 1981, Control of membrane fusion by phospholipid head groups. I. Phosphatidate/phosphatidylinositol specificity, Biochim. Biophys. Acta, 649:743.

    Article  PubMed  CAS  Google Scholar 

  • Sundler, R. and Wijkander, J., 1983, Protein-mediated intermembrane contact specifically enhances Ca2+-induced fusion of phosphatidatecontaining membranes, Biochim. Biophys. Acta, 730:391.

    Article  PubMed  CAS  Google Scholar 

  • Sundler, R., Düzgüneş, N. and Papahadjopoulos, D., 1981, Control of membrane fusion by phospholipid head groups. II. The role of phosphatidylethanolamine in mixtures with phosphatidate and phosphatidylinositol, Biochim. Biophys. Acta, 649:751.

    Article  PubMed  CAS  Google Scholar 

  • Verkleij, 1984, Lipidic intramembranous particles, Biochim. Biophys. Acta, 779:43.

    Google Scholar 

  • Verkleij, A.J., Mombers, C, Gerritsen, W.J., Leunissen-Bijvelt, L. and Cullis, P.R., 1979, Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized by freezefracturing, Biochim. Biophys. Acta, 555:358.

    Article  PubMed  CAS  Google Scholar 

  • Verkleij, A.J., van Echteld, C.J.A., Gerritsen, W.J., Cullis, P.R. and de Kruijff, B., 1980, The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonal HII transitions, Biochim. Biophys. Acta, 600:620.

    Article  PubMed  CAS  Google Scholar 

  • Verkleij, A.J., Leunissen-Bijvelt, J., de Kruijff, B., Hope, M. and Cullis, P.R., 1984, Non-bilayer structures in membrane fusion, in: “Cell Fusion, Ciba Foundation Symposium 103,” pp. 45–59, Pitman Books, London.

    Google Scholar 

  • Waite, M., DeChatelet, L.R., King, L. and Shirley, P.S., 1979, Phagocytosis-induced release of arachidonic acid from human neutrophils,Biochem. Biophys. Res. Commun., 90:984.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, C.E., Waite, B.M., Thomas, M.J. and DeChatelet, L.R., 1981, Release and metabolism of arachidonic acid in human neutrophils, J. Biol. Chem., 256:7228.

    PubMed  CAS  Google Scholar 

  • Wilschut, J. and Hoekstra, D., 1984, Membrane fusion: from liposomes to biological membranes, Trends Biochem. Sci., 9:479.

    Article  CAS  Google Scholar 

  • Wilschut, J., Düzgüneş, N. Fraley, R., and Papahadjopoulos, D., 1980, Studies on the mechanism of membrane fusion: Kinetics of Ca-induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents, Biochemistry, 19:6011.

    Article  PubMed  CAS  Google Scholar 

  • Wilschut, J., Düzgüneş, N. and Papahadjopoulos, D., 1981, Calcium/magnesium specificity in membrane fusion: Kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature, Biochemistry, 20:3126.

    Article  PubMed  CAS  Google Scholar 

  • Wilschut, J., Düzgüneş, N., Hong, K., Hoekstra, D., and Papahadjopoulos, D., 1983, Retention of aqueous contents during divalent cationinduced fusion of phospholipid vesicles, Biochim. Biophys. Acta, 734:309.

    Article  CAS  Google Scholar 

  • Wilschut, J., Nir, S., Scholma, J. and Hoekstra, D., 1985a, Kinetics of Ca2+-induced fusion of cardiolipin-phosphatidylcholine vesicles: Correlation between vesicle aggregation, bilayer destabilization, and fusion, Biochemistry, 24:4630.

    Article  PubMed  CAS  Google Scholar 

  • Wilschut, J., Scholma, J., Bental, M., Hoekstra, D. and Nir, S., 1985b, Ca2+-induced fusion of phosphatidylserine vesicles: Mass action kinetic analysis of membrane lipid mixing and aqueous contents mixing, Biochim. Biophys. Acta, 821:45.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, S.P., and Kirshner, N., 1983, Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells, J. Biol. Chem. 258:4994.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Papahadjopoulos, D., Meers, P.R., Hong, K., Ernst, J.D., Goldstein, I.M., Düzgünes, N. (1988). Calcium-Induced Membrane Fusion: From Liposomes to Cellular Membranes. In: Ohki, S., Doyle, D., Flanagan, T.D., Hui, S.W., Mayhew, E. (eds) Molecular Mechanisms of Membrane Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1659-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1659-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8921-0

  • Online ISBN: 978-1-4613-1659-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics