Advertisement

Human Amyloidosis and In Vitro Formation of Alzheimer Amyloid Fibrils

  • Eduardo M. Castaño
  • Blas Frangione
Part of the Advances in Behavioral Biology book series (ABBI, volume 34)

Abstract

Amyloidosis is a generic term that describes the chronic deposition in the extracellular and intracellular spaces of abnormal fibrillar proteins. These proteins share the properties of a β-pleated sheet secondary structure, insolubility, green birefringence after Congo red staining and the formation of fibrils with a typical electron microscopic appearance.1,2 The deposition of amyloid fibrils is the resultant of a diversity of pathological conditions, and the localization of these deposits is probably determined by tissue-related factors as well as by the type of protein involved (Table 1). Primary amyloidosis presents in 90% of the cases an M component that can be detected in serum, urine or cerebrospinal fluid.3,4 This observation and the presence of multiple myeloma in 20% of the cases, suggest that a plasma cell dysfunction plays an important role in its pathogenesis.5 The amyloid protein in primary amyloidosis has been shown to be the amino terminal fragment of immunoglobulin light chains with a variable molecular weight, ranging from 5–23 kDa.6,7 Some subgroups of light chains appear to have a highly amyloidogenic primary structure, as shown by preferential association of λVI with primary amyloidosis and the in vitro formation of amyloid fibrils from some, but not all, of the Bence Jones proteins studied.8–10 Secondary amyloidosis is related to acquired chronic inflammatory conditions such as rheumatoid arthritis, tuberculosis, leprosy, bronchiectasia, and osteomyelitis.

Keywords

Familial Mediterranean Fever Amyloid Fibril Cerebral Amyloid Angiopathy Paired Helical Filament Immunoglobulin Light Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glenner GG: Amyloid deposits and amyloidosis: the β-fibrilloses. N Engl J Med 302:1283–1292, 1980.PubMedCrossRefGoogle Scholar
  2. 2.
    Glenner GG, Eanes ED, Page DL: The relation of the properties of Congo red stained amyloid fibrils to the β-conformation. J Histochem Cytochem 20:821–826, 1972.PubMedCrossRefGoogle Scholar
  3. 3.
    Isobe T, Osserman EF: Patterns of amyloidosis and their association with plasma cell dyscrasia, monoclonal immunoglobulins and Bence Jones proteins. N Engl J Med 290:473–477, 1984.CrossRefGoogle Scholar
  4. 4.
    Hansotia P, Ganik K, Friedenberg W: Cerebrospinal fluid monoclonal gammopathy in multiple myeloma and Waldenstrom’s macroglobulinemia. Neurology (NY) 33:1411–1415, 1983.Google Scholar
  5. 5.
    Kyle RA, Greipp PR: Amyloidosis (AL) clinical and laboratory features in 229 cases. Mayo Clinic Proc 58:665–683, 1983.Google Scholar
  6. 6.
    Glenner GG, Terry W, Harada M, et al: Amyloid fibril proteins: Proof of homology with immunoglobulin light chains by sequence analysis. Science 172:1150–1151, 1971.PubMedCrossRefGoogle Scholar
  7. 7.
    Sletten K, Husby G, Natvig JB: N-terminal amino acid sequence of amyloid fibril protein AR, prototype of a new λ-variable subgroup VλVI. Scand J Immunol 3:833–836, 1974.PubMedCrossRefGoogle Scholar
  8. 8.
    Solomon A, Frangione B, Franklin EC: Bence Jones proteins and light chains of immunoglobulins: Preferential association of the VλVI subgroup of human light chains with amyloidosis AL (λ). J Clin Invest 70:453–460, 1982.PubMedCrossRefGoogle Scholar
  9. 9.
    Linke RP, Tischendorf FW, Zucker-Franklin D, et al.: The formation of amyloid-like fibrils in vitro from Bence Jones proteins of the λI subclass. J Immunol 111:24–26, 1973.PubMedGoogle Scholar
  10. 10.
    Glenner GG, Ein D, Eanes ED, et al: Creation of “amyloid” fibrils from Bence Jones proteins in vitro. Science 174:712–714, 1971.PubMedCrossRefGoogle Scholar
  11. 11.
    Franklin EC, Pras M, Levin M, et al: The partial amino acid sequence of the major low molecular weight component of two human amyloid fibrils. FEBS Lett 22:121–123, 1972.PubMedCrossRefGoogle Scholar
  12. 12.
    Pras M, Franklin EC, Shibolet S, et al: Amyloidosis associated with renal cell carcinoma is of the AA type. Am J Med 73:426–428, 1982.PubMedCrossRefGoogle Scholar
  13. 13.
    Sohar E, Gafni J, Pras M, et al: Familial Mediterranean Fever: A survey of 470 cases and review of the literature. Am J Med 43:227–253, 1967.PubMedCrossRefGoogle Scholar
  14. 14.
    Benditt EP, Erikssen N, Hermodsen NA, et al: The major proteins of human and monkey amyloid substance: Common properties including unusual N-terminal amino acid sequences. FEBS Lett 19:169–173, 1971.PubMedCrossRefGoogle Scholar
  15. 15.
    Levin M, Franklin EC, Frangione B, et al: The amino acid sequence of a major non-immunoglobulin component of some amyloid fibrils. J Clin Invest 51:2773–2776, 1972.PubMedCrossRefGoogle Scholar
  16. 16.
    Levin M, Pras M, Franklin EC: Immunologic studies of the major nonimmunoglobulin protein of amyloid. Identification and partial characterization of a related serum component. J Exp Med 138:373–380, 1973.PubMedCrossRefGoogle Scholar
  17. 17.
    Rosenthal CJ, Franklin EC, Frangione B, et al: Isolation and partial characterization of SAA. An amyloid related protein from human serum. J Immunol 116:1415–1418, 1976.PubMedGoogle Scholar
  18. 18.
    Benditt EP, Erikssen N: Amyloid protein SAA is associated with high density lipoprotein from human serum. Proc Natl Acad Sci (USA) 74:4025–4028, 1977.CrossRefGoogle Scholar
  19. 19.
    Rosenthal CJ, Franklin EC: Variation with age and diseases of an amyloid A protein-related serum component. J Clin Invest 55:746–753, 1975.PubMedCrossRefGoogle Scholar
  20. 20.
    Sipe JD, Colten HR, Goldberger G, et al: Human serum amyloid A (SAA): Biosynthesis and postsynthetic processing of pre-SAA and structural variants defined by complementary DNA. Biochemistry 24:2931–2936, 1985.PubMedCrossRefGoogle Scholar
  21. 21.
    Lavie G, Zucker-Franklin D, Franklin EC: Degradation of serum amyloid A protein by surface-associated enzymes of human blood monocytes. J Exp Med 148:1020–1031, 1978.PubMedCrossRefGoogle Scholar
  22. 22.
    Sletten K, Westermark P, Natvig JB: Senile cardiac amyloid related to prealbumin. Scan J Immunol 12:503–506, 1980.CrossRefGoogle Scholar
  23. 23.
    Husby G, Ranlow PJ, Sletten K, et al: The amyloid in familial amyloid cardiomyopathy of Danish origin is related to prealbumin. Clin Exp Immunol 60:207–216, 1985.PubMedGoogle Scholar
  24. 24.
    Saraiva MJM, Birken S, Costa PP, et al: Amyloid fibril protein in familial amyloidotic polyneuropathy Portuguese type. J Clin Invest 74:104–119, 1984.PubMedCrossRefGoogle Scholar
  25. 25.
    Tawara S, Nakazato M, Kangawa K, et al: Identification of amyloid prealbumin variant in familial amyloidotic polyneuropathy (Japanese type). Biochem Biophys Res Commun 116:880–888, 1983.PubMedCrossRefGoogle Scholar
  26. 26.
    Dwulet FE, Benson MD: Primary structure of an amyloid prealbumin and its plasma precursor in a heredofamilial polyneuropathy of Swedish origin. Proc Natl Acad Sci (USA) 81:694–698, 1984.CrossRefGoogle Scholar
  27. 27.
    Pras M, Prelli F, Gafni J, et al: Genetic heterogeneity of familial amyloid polyneuropathies of Jewish type, in Glenner GG, Osserman EF, Benditt EP, et al (eds): Amyloidosis, Plenum Press, NY, 1986, p 385.CrossRefGoogle Scholar
  28. 28.
    Dwulet FE, Benson MD: Characterization of a transthyretin (prealbumin) variant associated with familial amyloidotic polyneuropathy type II (Indiana/Swiss). J Clin Invest 78:880–886, 1986.PubMedCrossRefGoogle Scholar
  29. 29.
    Grey HM, Kubo RT, Colon SM, et al: The small subunit of HL-A antigens is β2-mic roglobulin. J Exp Med 138:1608–1612, 1973.PubMedCrossRefGoogle Scholar
  30. 30.
    Poulik MD, Perry DJ, Sekine T, et al: Statistical analysis of β2-microglobulin levels in sera of lung and gastrointestinal cancer patients. Vox Sang 38:328–333, 1980.PubMedCrossRefGoogle Scholar
  31. 31.
    Gejyo F, Yamada T, Odani S, et al: A new form of amyloid protein with chronic hemodialysis was identified as β2-microglobulin. Biochem Biophys Res Commun 129:701–706, 1985.PubMedCrossRefGoogle Scholar
  32. 32.
    Gorevic PD, Munoz P, Casey TT, et al: Polymerization of intact β2-microglobulin in tissue causes amyloidosis in patients on chronic hemodialysis. Proc Natl Acad Sci (USA) 83:7908–7912, 1986.CrossRefGoogle Scholar
  33. 33.
    Sletten K, Westermark P, Natvig JB: Characterization of amyloid fibril proteins from medullary carcinoma of the thyroid. J Exp Med 143:993–997, 1976.PubMedCrossRefGoogle Scholar
  34. 34.
    Cohen DH, Feiner H, Jensson O, et al: Amyloid fibril in hereditary cerebral hemorrhage with amyloidosis (HCHWA) is related to the gastroentero-pancreatic neuroendocrine protein γ-trace. J Exp Med 158:623–628, 1983.PubMedCrossRefGoogle Scholar
  35. 35.
    Ghiso J, Pons-Estel B, Frangione B: Hereditary cerebral amyloid angiopathy: The amyloid fibrils contain a protein which is a variant of Cystatin C, an inhibitor of lysosomal cysteine proteases. Biochem Biophys Res Commun 136:548–554, 1986.PubMedCrossRefGoogle Scholar
  36. 36.
    Ghiso J, Jensson O, Frangione B: Amyloid fibrils in hereditary cerebral hemorrhage with amyloidosis of Icelandic type is a variant of γ-trace basic protein (Cystatin C). Proc Natl Acad Sci (USA) 83:2974–2978, 1986.CrossRefGoogle Scholar
  37. 37.
    Wattendorff AR, Bots GThAM, Went LN: Familial cerebral amyloid angiopathy presenting as recurrent cerebral hemorrhage. J Neurol Sci 55:121–135, 1982.PubMedCrossRefGoogle Scholar
  38. 38.
    Luyendijk W, Bots GThAM, Veger-Van Der Vlis M, et al: Familiaire hersenbloedingen als gevolg van cerebrale amyloide angiopathie. Ned Tijdschr Geneeskd 130:1935–1940, 1986.PubMedGoogle Scholar
  39. 39.
    Zucker-Franklin D, Fuks A: The role of the macrophage phagocytic system (MPS) in the development of secondary amyloidosis, in Marrink J, Van Rijswijk, MH (eds): Amyloidosis, Dordrecht, Martinus Nijhoff, 1986, p 329.CrossRefGoogle Scholar
  40. 40.
    Shirahama T, Skinner M, Sipe JD, et al: Widespread occurrence of AP in amyloidotic tissues. Virchows Arch 48:197–206, 1985.CrossRefGoogle Scholar
  41. 41.
    Prelli F, Pras M, Frangione B: The primary structure of human tissue amyloid P component from a patient with primary idiopathic amyloidosis. J Biol Chem 260:12895–12898, 1985.PubMedGoogle Scholar
  42. 42.
    Snow AD, Willmer J, Kisilevsky R: Sulfated glycosaminoglycans: A common constituent of all amyloids? Lab Invest 56:120–124, 1987.PubMedGoogle Scholar
  43. 43.
    Candy JM, Oakley AE, Klinowski J, et al: Aluminum silicates and senile plaque formation in Alzheimer’s Disease. Lancet 1:354–357, 1986.PubMedCrossRefGoogle Scholar
  44. 44.
    Axelrad MA, Kisilevsky R: Biological characterization of amyloidenhancing factor, in Glenner GG, Costa PP, Freitas F (eds): Amyloid and Amyloidosis. Amsterdam, 1Excerpta Medica, 1980, p 527.Google Scholar
  45. 45.
    Hoi PR, Snel FWJJ, Niewold ThA, et al: Amyloid enhancing factor (AEF) in the pathogenesis of AA-amyloidosis in the hamster. Virchows Arch 52:273–281, 1981.Google Scholar
  46. 46.
    Katzman R: The prevalence and malignancy of Alzheimer’s Disease: A major killer. Arch Neurol 33:217–219, 1976.PubMedCrossRefGoogle Scholar
  47. 47.
    Lampert PW, Gajdusek DC, Gibbs CJ Jr: Subacute spongiform virus encephalopathies: Scrapie, Kuru and Creutzfeldt-Jakob disease: A review. Am J Pathol 68:626–646, 1972.PubMedGoogle Scholar
  48. 48.
    Wisniewski K, Jervis GA, Moretz RC, et al: Alzheimer neurofibrillary tangles in diseases other than senile or presenile dementia. Ann Neurol 5:288–294, 1979.PubMedCrossRefGoogle Scholar
  49. 49.
    Stam FC, Wigboldus JM, Smeulders WM: Age incidence of senile brain amyloidosis. Path Res Pract 181:558–562, 1986.PubMedCrossRefGoogle Scholar
  50. 50.
    Selkoe DJ, Ihara Y, Abraham C, et al: Biochemical and immunocytochemical studies of Alzheimer paired helical filaments, in Katzman R (ed): Biological aspects of Alzheimer’s Disease, Banbury Report 15, Cold Spring Harbor, 1983, p 125.Google Scholar
  51. 51.
    Kidd M: Paired helical filaments in electron microscopy of Alzheimer’s Disease. Nature 197:192–193, 1963.PubMedCrossRefGoogle Scholar
  52. 52.
    Wisniewski HM, Narang HK, Terry RD: Neurofibrillary tangles of paired helical filaments. J Neurol Sci 27:173–181, 1976.PubMedCrossRefGoogle Scholar
  53. 53.
    Wisniewski HM, Wen GY: Substructures of paired helical filaments from Alzheimer’s Disease neurofibrillary tangles. Acta Neuropath (Berl) 66:173–176, 1985.CrossRefGoogle Scholar
  54. 54.
    Crowther RA, Wischik CM: Structure of the Alzheimer paired helical filament, in Marrink J, Van Rijswijk MH (eds): Amyloidosis, Dordrecht, Martinus Nijhoff, 1986, p 159.CrossRefGoogle Scholar
  55. 55.
    Terry RD, Gonatas NK, Weiss M: Ultrastructural studies in Alzheimer’s presenile dementia. Am J Pathol 44:269–297, 1964.PubMedGoogle Scholar
  56. 56.
    Miyakawa T, Watanabe K, Katswagi S: Ultrastructure of amyloid fibrils in Alzheimer’s Disease and Down’s Syndrome. Virchows Arch 52:99–106, 1986.CrossRefGoogle Scholar
  57. 57.
    Bladen HA, Nylen MU, Glenner GG: The ultrastructure of human amyloid as revealed by the negative staining technique. J Ultrastruct Res 14:449–459, 1966.PubMedCrossRefGoogle Scholar
  58. 58.
    Mandybur TI: The incidence of cerebral amyloid angiopathy in Alzheimer’s Disease. Neurology 25:120–126, 1975.PubMedGoogle Scholar
  59. 59.
    Glenner GG, Wong CW: Alzheimer’s Disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890, 1984.PubMedCrossRefGoogle Scholar
  60. 60.
    Glenner GG, Wong, CW: Alzheimer’s Disease and Down’s Syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122:1131–1135, 1984.PubMedCrossRefGoogle Scholar
  61. 61.
    Wong CW, Quaranta V, Glenner GG: Neuritic plaques and cerebrovascular amyloid in Alzheimer’s Disease are antigenically related. Proc Natl Acad Sci (USA) 82:8729–8732, 1985.CrossRefGoogle Scholar
  62. 62.
    Masters CL, Simms G, Weinman NA, et al: Amyloid plaque core protein in Alzheimer’s Disease and Down’s Syndrome. Proc Natl Acad Sci (USA) 82:4245–4249, 1985.CrossRefGoogle Scholar
  63. 63.
    Kang J, Lemaire HG, Unterbeck A, et al: The precursor of Alzheimer’s Disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736, 1987.PubMedCrossRefGoogle Scholar
  64. 64.
    Goldgaber D, Lerman MI, McBride OW, et al: Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s Disease. Science 235:877–880, 1987.PubMedCrossRefGoogle Scholar
  65. 65.
    Masters CL, Multhaup G, Simms G, et al: Neuronal origin of a cerebral amyloid: Neurofibrillary tangles of Alzheimer’s Disease contain the same protein as the amyloid of plaque core and blood vessels. EMBO J 4:2757–2763, 1985.PubMedGoogle Scholar
  66. 66.
    Gorevic PD, Goni F, Pons-Estel B, et al: Isolation and partial characterization of neurofibrillary tangles and amyloid plaque core in Alzheimer’s Disease — immunohistological studies. J Neuropath Exp Neurol 45:647–664, 1986.PubMedCrossRefGoogle Scholar
  67. 67.
    Allsop D: Biochemistry of cerebral amyloid in Alzheimer’s Diease, the unconventional slow virus diseases and Icelandic cerebrovascular amyloidosis, Marrink J, Van Rijswijk MH (eds): Amyloidosis, Dordrecht, Martinus Nijhoff, 1986, p 243.CrossRefGoogle Scholar
  68. 68.
    Selkoe DJ, Ihara Y, Salazar FJ: Alzheimer’s Disease: Insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea. Science 215:1243–1245, 1982.PubMedCrossRefGoogle Scholar
  69. 69.
    Perry G, Rizzuto N, Autilio-Gambetti L, et al: Paired helical filaments from Alzheimer’s Disease patients contain cytoskeletal components. Proc Natl Acad Sci (USA) 82:3916–3920, 1985.CrossRefGoogle Scholar
  70. 70.
    Grundke-Iqbal I, Iqbal K, Quinlan M, et al: Microtubule associated protein tau: A component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089, 1986.PubMedGoogle Scholar
  71. 71.
    Wood JG, Mirra SS, Pollock NJ, et al: Neurofibrillary tangles of Alzheimer’s Disease share antigenic determinants with the axonal microtubule-associated protein tau (t). Proc Natl Acad Sci (USA) 83:4040–4043, 1986.CrossRefGoogle Scholar
  72. 72.
    Kosik KS, Joachin CL, Selkoe DJ: Microtubule associated protein tau (t) is a major antigenic component of paired helical filaments in Alzheimer’s Disease. Proc Natl Acad Sci (USA) 83:4044–4048, 1986.CrossRefGoogle Scholar
  73. 73.
    Allsop D, Landon M, Kidd M, et al: Monoclonal antibodies raised against a subsequence of senile plaque core protein react with plaque cores, plaque periphery and cerebrovascular amyloid in Alzheimer’s Disease. Neurosc Lett 68:252–256, 1986.CrossRefGoogle Scholar
  74. 74.
    Castano EM, Ghiso J, Prelli F, et al: In vitro formation of amyloid fibrils from two synthetic peptides of different lengths homologous to Alzheimer’s Disease β-protein. Biochem Biophys Res Commun 141:782–789, 1986.PubMedCrossRefGoogle Scholar
  75. 75.
    Shirahama T, Benson MD, Cohen AS, et al: Fibrillar assemblage of variable segments of immunoglobulin light chains: An electron microscopic study. J Immunol 110:21–30, 1973.PubMedGoogle Scholar
  76. 76.
    Glenner GG, Eanes ED, Bladen HA, et al: β-pleated sheet fibrils: a comparison of native amyloid with synthetic protein fibrils. J Histochem Cytochem 22:1141–1158, 1974.PubMedCrossRefGoogle Scholar
  77. 77.
    Connors LH, Shirahama T, Skinner M, et al: In vitro formation of amyloid fibrils from intact β2-microglobulin. Biochem Biophys Res Commun 131:1063–1068, 1985.PubMedCrossRefGoogle Scholar
  78. 78.
    Perry EK, Oakley AE, Candy JM, et al: Properties and possible significance of substance P and insulin fibrils. Neurosc Lett 25:321–325, 1981.CrossRefGoogle Scholar
  79. 79.
    Kirschner CA, Abraham C, Selkoe DJ: X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer’s Disease indicates cross-B conformation. Proc Natl Acad Sci (USA) 83:503–507, 1986.CrossRefGoogle Scholar
  80. 80.
    Masters CL, Beyreuther K: Amyloidogenic proteins in human central nervous system diseases, in Marrink J, Van Rijswijk MH (eds): Amyloidosis, Dordrecht, Martinus Nijhoff, 1986, p 149.CrossRefGoogle Scholar
  81. 81.
    Garcini EM, Serrano L, Avila J: Self assembly of microtubule associated protein tau into filaments resembling those found in Alzheimer’s Disease. Biochem Biophys Res Commun 141:790–796, 1986.CrossRefGoogle Scholar
  82. 82.
    Prelli F, Pras M, Frangione B: The degradation and deposition of amyloid AA fibril is tissue specific. Submitted for publication, 1987.Google Scholar
  83. 83.
    Bendheim PE, Bockman JM, McKinley MP: Scrapie and Creutzfeldt-Jakob disease prion proteins share physical properties and antigenic determinants. Proc Natl Acad Sci (USA) 82:997–1001, 1985.CrossRefGoogle Scholar
  84. 84.
    Kyle P, Doolittle RF: A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132, 1982.CrossRefGoogle Scholar
  85. 85.
    Chou PY, Fasman GD: Prediction of protein conformation. Biochemistry 13:222–245, 1974.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Eduardo M. Castaño
    • 1
  • Blas Frangione
    • 2
  1. 1.Department of PathologyNew York University Medical CenterNew YorkUSA
  2. 2.Kaplan Cancer CenterNew York University Medical CenterNew YorkUSA

Personalised recommendations