Skip to main content

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 34))

Abstract

The neuron, like many other types of cells, contains three major morphologically distinct filamentous systems: microfilaments, intermediate filaments and microtubules.1 The role of these cytoskeletal components in the neuron has been unclear until recently. These discoveries have implicated the cytoskeleton in many cell functions, including internal organization.2–5 Microfilaments in neurons have mainly been studied in relation to axonal transport.6–9 By light microscopy, actin filaments have been demonstrated in neurites,10–13 growth cones of avian dorsal root ganglia cells14–18 and in microspikes of murine neuroblastoma cells.10–11 In situ organization of actin filaments in dendritic spines, dendrites and axon terminals has been demonstrated19 using heavy meromyosin decoration.20

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fifkova E: Actin in the nervous system. Brain Res Rev, 9:187–215, 1985.

    Article  CAS  Google Scholar 

  2. Ellisman MH, Porter KR: Microtrabecular structure of the axoplasmic matrix: visualization of cross-linking structures and their distribution. J Cell Biol, 87:464–479, 1980.

    Article  PubMed  CAS  Google Scholar 

  3. Ellisman MH, Porter KR: Introduction to the cytoskeleton, in: “Neurofilaments”, C.A. Marotta, ed. University of Minnesota Press, Minneapolis, 1983.

    Google Scholar 

  4. Schliwa M, Pryzwansky KB, Van Blerkom J: Implications of cytoskeletal interactions for cellular architecture and behavior. Phil Trans Roy Soc B, 299:199–205, 1982.

    Article  CAS  Google Scholar 

  5. Schliwa M, Van Blerkom J, Pryzwansky KB: Structural organization of the cytoplasm. Cold Spring Harbor Symp Quant Biol, 46:51–67, 1982.

    PubMed  Google Scholar 

  6. Black M, Lasek R: Axonal transport of actin: slow component b is the principal source of actin for the axon. Brain Res, 171:401–413, 1979.

    Article  PubMed  CAS  Google Scholar 

  7. Black M, Lasek R: Slow components of axonal transport: two cytoskeletal networks. J Cell Biol, 86:616–623, 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Grafstein B, Forman DS: Intracellular transport in neurons. Ann Rev Physiol, 60:1167–1283, 1980.

    CAS  Google Scholar 

  9. Schwartz JH: Axonal transport: components, mechanisms, and specificity. Ann Rev Neurosci, 2:467–504, 1979.

    Article  PubMed  CAS  Google Scholar 

  10. Bray D, Thomas C: Polymerized actin in fibroblasts and brain. J Mol Biol, 105:527–530.

    Google Scholar 

  11. Chang CM, Goldman RD: The localization of actin-like fibers in cultured neuroblastoma cells are revealed by heavy meromyosin binding. J Cell Biol, 57:867–874, 1973.

    Article  PubMed  CAS  Google Scholar 

  12. Isenberg G, Small JV: Filamentous actin, 100A filaments and microtubules in neuroblastoma cells. Cytobiology, 16:326–344, 1978.

    Google Scholar 

  13. Kuczmarski ER, Rosenbaum JL: Studies on the organization and localization of actin and myosin in neurons. J Cell Biol, 80:356–371, 1979.

    Article  PubMed  CAS  Google Scholar 

  14. Letourneau PC: Immunocytochemical evidence for colocalization in neurite growth cones of actin and myosin and their relationship to cell-substratum adhesion. Develop Biol, 85:113–122, 1981.

    Article  PubMed  CAS  Google Scholar 

  15. Letourneau PC, Ressler AH: Differences in the organization of actin in the growth cones compared with the neurites of cultured neurons from chick embryos. J Cell Biol, 97:963–973, 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Luduena MA, Wessels NK: Cell locomotion, nerve elongation and microfilaments. Develop Biol, 30:427–440, 1973.

    Article  PubMed  CAS  Google Scholar 

  17. Spooner BS, Holladay CR: Distribution of tubulin and actin in neurites and growth cones of differentiating nerve cells. Cell Motility, 1:167–178, 1981.

    Article  PubMed  CAS  Google Scholar 

  18. Tsui HCT, Ris H, Klein WL: Ultrastructural networks in growth cones and neurites of cultured central nervous system neurons. Proc Natl Acad Sci U.S.A., 80:5779–5783, 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Fifkova E, Delay RJ: Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity. J Cell Biol, 95:345–350, 1982.

    Article  PubMed  CAS  Google Scholar 

  20. Ishikawa H, Bischoff R, Holtzer H: Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol, 43:312–328, 1969

    Article  PubMed  CAS  Google Scholar 

  21. Gambetti P, Schecket G, Ghetti B, et al: Neurofibrillary changes in human brain: an immunocytochemical study with a neurofilament antiserum. J Neuropathol Exp Neurol, 42:69–79, 1983.

    Article  PubMed  CAS  Google Scholar 

  22. Anderton BH, Calvert R, Probst A, et al: Antibody studies of neurofilaments and neurofibrillary tangles. J Submicrosc Cytol, 16:63–64, 1984.

    Google Scholar 

  23. Perry G, Rizzuto N, Autilio-Gambetti L, et al: Paired helical filaments from Alzheimer disease patients contain cytoskeletal components. Proc Natl Acad Sci U.S.A., 82:3916–3920, 1985.

    Article  PubMed  CAS  Google Scholar 

  24. Perry G, Selkoe DJ, Block BR, et al: Electron microscopic localization of Alzheimer neurofibrillary tangle components recognized by an antiserum to paired helical filaments. J Neuropath Exp Neurol, 45:161–168, 1986.

    Article  PubMed  CAS  Google Scholar 

  25. Perry G, Stewart D, Friedman R, et al: Filaments of Pick’s bodies contain altered cytoskeletal elements. Am J Pathol, in press, 1987.

    Google Scholar 

  26. Hirano A, Malamud N, Elizan TS, et al: Amyotrophic lateral sclerosis and Parkinsonism-dementia complex on Guam. Arch Neurol: 15:35–51, 1966.

    Article  PubMed  CAS  Google Scholar 

  27. Hirano A, Dembitzar HM, Kurland LT, et al: The fine structure of some intraganglionic alterations: Neurofibrillary tangles, granulovacuolar bodies and “rod-like” structures as seen in Guam amyotrophic lateral sclerosis and Parkinsonism-dementia complex. J Neuropathol Exp Neurol, 27:167–182, 1968.

    Article  PubMed  CAS  Google Scholar 

  28. Goldman JE: The association of actin with Hirano bodies. J Neuropathol Exp Neurol, 42:146–152, 1983.

    Article  PubMed  CAS  Google Scholar 

  29. Schochet SS Jr, Hardman JM, Ladewig PP, et al: Intraneuronal conglomerates in sporadic motor neuron disease. Arch Neurol, 20:548–553, 1969.

    Article  PubMed  Google Scholar 

  30. Field EJ, Mathews JD and Raine CS: Electron microscopic observations on the cerebellar cortex in kuru. J Neurol Sci, 8:209–224, 1969.

    Article  PubMed  CAS  Google Scholar 

  31. Gibson PH: Light and electron microscopic observations on the relationship between Hirano bodies, neuron and glial perikarya in the human hippocampus. Acta Neuropathol (Berl), 30:165–171, 1978.

    Article  Google Scholar 

  32. Ramsey HJ: Altered synaptic terminals in cortex near tumor. Am J Pathol, 51:1093–1109, 1967.

    PubMed  CAS  Google Scholar 

  33. Hirano A, Dembitzer HM: Eosinophilic rod-like strulctures in myelinated fibers of hamster spinal roots. Neuropathol Appl Neurobiol, 2:225–232, 1976.

    Article  Google Scholar 

  34. Nagara H, Doi H, Iwaki T, et al: Intracytoplasmic inclusion of Hirano type in Purkinje cells. Clin Neuropathol, 5:131–133, 1986.

    PubMed  CAS  Google Scholar 

  35. Yamamoto T, Hirano A: Hirano oodies in the perikaryon of the Purkinje cell in a case of Alzheimer’s disease. Acta Neuropathol (Berl), 67:167–169, 1985

    Article  CAS  Google Scholar 

  36. Ho K-L, Allevato PA: Hirano body in an inflammatory cell of leptomeningeal vessel infected by fungus Paecilomyces. Acta Neuropathol (Berl), 71:159–162, 1986.

    Article  CAS  Google Scholar 

  37. Okamato K, Hirai S, Hirano A: Hirano bodies in myelinated fibers of hepatic encephalopathy. Acta Neuropathol (Berl), 58:307–310, 1982.

    Article  Google Scholar 

  38. Tomonaga M: Hirano body in extraocular muscle. Acta Neuropathol (Berl), 60:309–313, 1983.

    Article  CAS  Google Scholar 

  39. Ogata J, Budzilovich GN, Cravioto H: A study of rod-like structures (Hirano bodies) in 240 normal and pathology brains. Acta Neuropathol (Berl), 21:61–67, 1972.

    Article  CAS  Google Scholar 

  40. Tomanaga M, Yamanouchi H, Kameyama M, et al: Hirano bodies observed in the brain of the aged. Nippon Ronen Isakkai Zasshi, 12:13–17, 1975.

    Article  Google Scholar 

  41. Gibson PH, Stones M, Tomlinson BE: Senile changes in human neocortex and hippocampus compared by the use of the electron and light microscopes. J Neurol Sci, 27:389–405, 1976.

    Article  PubMed  CAS  Google Scholar 

  42. Gibson PH, Tomlinson BE: Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer’s disease. J Neurol Sci 33:199–206, 1977.

    Article  PubMed  CAS  Google Scholar 

  43. Schochet SS Jr, Lampert PW, Lindenoerg R: Fine structure of the Pick and Hirano bodies in a case of Pick’s disease. Acta Neuropathol (Berl), 11:330–337, 1968.

    Article  Google Scholar 

  44. Anzil AP, Herrlinger H, Blinzinger K, et al: Ultrastructure of brain and nerve biopsy in Wilson disease. Arch Neurol, 31:94–100, 1974.

    Article  PubMed  CAS  Google Scholar 

  45. Cartier L, Galvez S, Gadjusek DC: Familial clustering of the ataxic form of Creutzfeld-Jakob disease. J Neurol Neurosurg Psychiatry, 48:234–238, 1985.

    Article  PubMed  CAS  Google Scholar 

  46. Atsumi T, Yamamura Y, Sato T, et al: dirano bodies in the axon of peripheral nerves in a case with progressive external ophthalmoplegia with multisystem involvement. Acta Neuropathol (Berl), 49:95–100, 1980.

    Article  CAS  Google Scholar 

  47. Ulrich J, Herschkowitz N: Seitelberger’s connatal form of Pelizaeus-Mergbacher disease. Case report, clinical, pathological and biochemical findings. Acta Neuropathol (Berl) 40:129–136, 1977.

    Article  CAS  Google Scholar 

  48. Beal JA: Morphogenesis of the Hirano body in neurons of the squirrel monkey dorsal horn. J Neurocytol, 7:395–403, 1978.

    Article  PubMed  CAS  Google Scholar 

  49. Jacobs JM, Cavanagh JB: Aggregations of filaments in Schwann cells of spinal roots of the normal rat. J Neurocytol, 1:161–167, 1973.

    Article  Google Scholar 

  50. Spencer PS, Thomas PK: Ultrastructural studies of the dying-back process, II., The sequestration and removal by Schwann cells and oligodendrocytes of organelles from normal and diseased axons. J Neurocytol, 3:763–783, 1974.

    Article  PubMed  CAS  Google Scholar 

  51. Thomas PK, King RH, Snarma AK: Changes with age in the peripneral nerve of the rat. An ultrastructural study. Acta Neuropathol (Berl), 52:1–5, 1980.

    Article  CAS  Google Scholar 

  52. Yagishita S, Iton Y, Nakano T, et al: Crystalloid inclusions reminiscent of Hirano bodies in autolyzed peripheral nerve of normal Wistar rats. Acta Neuropathol (Berl), 47:231–236, 1979.

    Article  CAS  Google Scholar 

  53. David-Ferreira JF, David-Ferreira KL, Gibbs CJ, Jr, et al: Scrapie in mouse: Ultrastructural observations in the cerebral cortex. Proc Soc Exp Biol, 127:313–320, 1968.

    PubMed  CAS  Google Scholar 

  54. Sima AA, Hinton D: Hirano bodies in the distal symmetric polyneuropathy of the spontaneously diabetic BB-Wistar rat. Acta Neuro (Scand), 68:107–112, 1983.

    Article  CAS  Google Scholar 

  55. Brown HR, Jervis GA, Thormar H: Ultrastructural and histological studies of brains of ferrets inoculated with subacute sclerosing panencephalitis; similarities to human disease. J Neuropathol Exp Neurol, 36:653–655, 1977.

    Article  PubMed  CAS  Google Scholar 

  56. Goldman JE, Suzuki K: Immunocytochemical evidence for the associateion of actin with Hirano bodies, in: “IXth International Congress of Neuropatnology,” M. Goldstein, ed: Springer-Verlag, New York, 1983.

    Google Scholar 

  57. Nagara H, Yakajima K, Suzuki K: An ultrastructural study of the cerebellum of the brindled mouse. Acta Neuropathol (Berl), 52:41–50, 1980.

    Article  CAS  Google Scholar 

  58. Peterson C, Suzuki K, Kress Y, et al: Abnormalities of dendritic actin organization in the brindled mouse. Brain Res, 382:205–212, 1986.

    Article  PubMed  CAS  Google Scholar 

  59. Yajima K, Suzuki K: Neuronal degeneration in the brain of the brindled mouse. Acta Neuropathol (Berl), 45:17–25, 1979.

    Article  CAS  Google Scholar 

  60. Craig SW, Pollard T: Actin-binding proteins. Trends Biochem Sci, 7:88–95, 1982.

    Article  CAS  Google Scholar 

  61. Pollard TD, Aeoi U, Cooper JA, et al: Actin structure, polymerization and gelation. Cold Spring Harbor Symp on Quant Biol, 46:513–524, 1981.

    CAS  Google Scholar 

  62. Stossel TP, Chaponnier C, Ezzell RM, et al: Nonmuscle actin binding proteins. Ann Rev Cell Biol, 1:353–402, 1985.

    Article  PubMed  CAS  Google Scholar 

  63. Weeds A: Actin-binding proteins-Regulators of cell architecture and motility. Nature (Lond), 296:811–815, 1982.

    Article  CAS  Google Scholar 

  64. Galloway PG, Perry G, Gambetti P: Hirano body filaments contain actin and actin associated proteins. J Neuropathol Exp Neurol, 46:185–199, 1987.

    Article  PubMed  CAS  Google Scholar 

  65. Giometti CS, Anderson NL: Tropomyosin heterogeneity in human cells. J Biol Chem, 259:14113–14120, 1984.

    PubMed  CAS  Google Scholar 

  66. Fine RE, Blitz AL, Hitchcock SE, et al: Tropomyosin in brain and growing neurones. Nature New Biol, 245:182–186, 1973.

    Article  PubMed  CAS  Google Scholar 

  67. Fine RE, Blitz AL: A chemical comparison of tropomyosins from muscle and nonmuscle tissues. J Mol Biol, 95:447–454, 1975.

    Article  PubMed  CAS  Google Scholar 

  68. Scnliwa M: Proteins associated with cytoplasmic actin. Cell, 25:587–590, 1981.

    Article  Google Scholar 

  69. Hitchcock-DeGregori SE, Lewis SF, Cnou TM-T: Tropomyosin lysine reactivities and relationship to coiled-coil structure. Biochemistry, 24:3305–3314, 1985.

    Article  PubMed  CAS  Google Scholar 

  70. Joyce NC, Haire MF, Palade GE: Contractile proteins in pericytes. I. Immunoperoxidase localization of the tropomyosin. J Cell Biol, 100:1379–1386, 1985.

    Article  PubMed  CAS  Google Scholar 

  71. Warren RH, Gordon E, Azarina R: Tropomyosin in peripheral ruffles of cultured rat kidney cells. Eur J Cell Biol, 38:245–253, 1985.

    PubMed  CAS  Google Scholar 

  72. Smillie LB: Structure and functions of tropomyosins from muscle and non-muscle sources. Trends Biochem Sci, 4:151–155, 1979.

    Article  CAS  Google Scholar 

  73. Wegner A: Kinetic analysis of actin assembly suggests that tropomyosin inhibits spontaneous fragmentation of actin filaments. J Mol Biol, 161:217–227, 1982.

    Article  PubMed  CAS  Google Scholar 

  74. Bernstein BW, Bamburg JR: Tropomyosin binding to F-actin protects the F-actin from disassembly by actin de-polymerizing factor (ADF). Cell Motil, 2:1–8, 1982.

    PubMed  CAS  Google Scholar 

  75. Fattoum A, Hartwig JH, Stossel HP: Isolation and some structural and function properties of macrophage tropomyosin. Biochemistry, 22:1187–1193, 1983.

    Article  PubMed  CAS  Google Scholar 

  76. Duhaiman AS, Bamburg JR: Isolation of brain alpha-actinin. Its characterization and a comparison of its properties with those of muscle alpna-actinin. Biochemistry, 23:1600–1608, 1984.

    Article  PubMed  CAS  Google Scholar 

  77. Bennett JP, Zaner KS, Stossel TP: Isolation and some properties of macrophage alpha-actinin: evidence that it is not an actin gelling protein. Biochemistry, 23:5081–5086, 1984.

    Article  PubMed  CAS  Google Scholar 

  78. Geiger B: A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell, 18:193–205, 1979.

    Article  PubMed  CAS  Google Scholar 

  79. Peramisco JR, Burridge K: A rapid purification of alpha-actinin, filamin and a 130,000-dalton protein from smooth muscle. J Biol Chem, 255:1194–1199, 1980.

    Google Scholar 

  80. Burridge K, Feramisco JR: Alpha-actinin and vinculin from non-muscla cells: calcium sensitive interactions with actin. Cold Spring Harbor Symp Quant Biol, 46:587–597, 1982.

    PubMed  Google Scholar 

  81. Isenberg G, Leonard K, Jockusch BM: Structural aspects of vinculin-actin interaction. J Mol Biol, 158:231–249, 1982.

    Article  PubMed  CAS  Google Scholar 

  82. Jockusch BM, Isenberg G: Interactions of alpha-actinin and vinculin with actin: opposite effects on filament network formation. Proc Natl Acad Sci U.S.A., 78:3005–3009, 1981.

    Article  PubMed  CAS  Google Scholar 

  83. Jockuscn BM, Isenberg G: Vinculin and alpha-actinin: interaction with actin and effect on microfilament network formation. Cold Spring Harbor Symp on Quant Biol, 46:613–623, 1982.

    Google Scholar 

  84. Wilkins JA, Lin S: High affinity interaction of vinculin with actin filaments in vitro. Cell, 28:83–90, 1982.

    Article  PubMed  CAS  Google Scholar 

  85. Wilkins JA, Lin S: A re-examination of the interaction of vinculin and actin. J Cell Biol, 102:1085–1092, 1986.

    Article  PubMed  CAS  Google Scholar 

  86. Evans RR, Robson RM, Stromer MH: Properties of smooth muscle vinculin. J Biol Chem, 259:3916–3924, 1984.

    PubMed  CAS  Google Scholar 

  87. Otto J: Vinculin: intereactions with actin, with itself, and with a 220,000 dalton vinculin binding protein. J Cell Biol, 97:282a,1983.

    Article  Google Scholar 

  88. Otto JJ: The lack of interaction between vinculin and actin. Cell Motility and Cytoskeleton, 6:48–55, 1986.

    Article  CAS  Google Scholar 

  89. Rosenfeld GA, Hou DC, Dingus J, et al: Isolation and purification of human platelet vinculin. J Cell Biol, 100:669–676, 1985.

    Article  PubMed  CAS  Google Scholar 

  90. O’Brien L, Shelly S, Towfighi J, et al: Crystalline ribosomes are present in brains from senile humans. Proc Natl Acad Sci U.S.A., 77:2260–2264, 1980.

    Article  PubMed  Google Scholar 

  91. Mori H, Tomanaga M, Baba N, et al: The structure analysis of Hirano bodies by digital processing of electron micrographs. Acta Neuropathol (Berl), 71:32–37, 1986.

    Article  CAS  Google Scholar 

  92. Wulf E, Deboben A, Bautz FA, et al: Fluorescent pnallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci U.S.A., 76:4498–4502, 1979.

    Article  PubMed  CAS  Google Scholar 

  93. Kidd M: Paired nelical filaments in electron microscopy of Alzheimer’s disease. Nature, 197:192–193, 1963.

    Article  PubMed  CAS  Google Scholar 

  94. Iqbal K, Grundke-Iqbal I, Wisniewski: Microtubule associated protein tau is a major constituent of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089, 1986.

    PubMed  Google Scholar 

  95. Kosik KS, Joachim CL, Selkoe DJ: Microtubule associated protein, tau, is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U.S.A., 83:4044–4049, 1986.

    Article  PubMed  CAS  Google Scholar 

  96. Nukina N, Ihara Y: One of tne antigenic determinants of paired helical filaments is related to tau protein. J Biochem, 99:1541–1544, 1986.

    PubMed  CAS  Google Scholar 

  97. Autilio-Gambetti L, Gambetti P, Crane R: Paired helical filaments: Relatedness to neurofilaments shown by silver staining and reactivity with monoclonal antibodies, in: R. Katzman, edi. “Banbury Report 15: Biological Aspects of Alzheimer Disease”, Cold Spring Harbor Laboratory, Cold Spring Harbor, 1984.

    Google Scholar 

  98. Kosik KS, Duffy LK, Dowling MM, et al: Microtubule associated protein 2: Monoclonal antibodies demonstrate the selective incorporation of certain epitopes into Alzheimer neurofibrillary tangles. Proc Natl Acad Sci U.S.A., 81:7941–7945, 1984.

    Article  PubMed  CAS  Google Scholar 

  99. Brion JP, Passariero H, Nunez J, et al: Immunologic determinants of tau protein are present in neurofibrillary tangles of Alzheimer disease. Arch Biol, 95:229–235, 1985.

    Google Scholar 

  100. Wood JG, Mirra SS, Pollock NJ, et al: Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau. Proc Natl Acad Sci U.S.A., 83:4040–4043.

    Google Scholar 

  101. Galloway PG, Perry G, Kosik K, et al: Hirano bodies contain tau protein. Brain Res, in press, 1987.

    Google Scholar 

  102. Drubin DG, Caput D, Kirschner MW: Studies on the expression of the microtubule associated protein tau, during mouse brain development, with newly isolated DNA probes. J Cell Biol, 98:1090–1097.

    Google Scholar 

  103. Cleveland DW, Hwo SY, Kirschner MW: Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol, 116:227–247, 1984.

    Article  Google Scholar 

  104. Griffith LM, Pollard TD: The interaction of actin filaments with microtubules and microtubule-associated proteins. J Biol Chem, 257:9143–9151, 1982.

    PubMed  CAS  Google Scholar 

  105. DeCamilli PP, Miller P, Navone F, et al: Distribution of microtubule associated protein 2 (MAP2) in the nervous system of the rat studied by immunofluorescence. Neuroscience, 11:819–846, 1984.

    Article  Google Scholar 

  106. Goldman JE: Cytoskeletal constituents of Hirano bodies. J Neuropathol Exp Neurol, 45:334a, 1986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Galloway, P.G., Perry, G. (1987). Microfilament Involvement in Hirano Body Formation. In: Perry, G. (eds) Alterations in the Neuronal Cytoskeleton in Alzheimer Disease. Advances in Behavioral Biology, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1657-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1657-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8920-3

  • Online ISBN: 978-1-4613-1657-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics