Skip to main content

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 34))

Abstract

For decades neuroanatomists have been familiar with a distinctive fibrillar appearance of large mammalian axons after treatment of nervous tissue with various silver stains. These structures were aptly referred to as “neurofibrils.” It was only relatively recently through combined efforts utilizing electron microscopic, biochemical, and immunological methodologies that these well-known structures have been more precisely defined and characterized. Today we refer to these “neurofibrils” as neurofilaments. The goal of this chapter is to review our current knowledge and understanding of neurofilaments in the context of normal cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peters A, de Webster H, Palay S: The Fine Structure of the Nervous System: The Neurons and Supporting Cells. Philadelphia, WE Saunders Co, 1982

    Google Scholar 

  2. Hirokawa N: Cross-linker system between neurofilament, microtubules, and membrane organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol 94:129–142, 1982

    PubMed  CAS  Google Scholar 

  3. Schnapp BJ, Reese TS: Cytoplasmic structures in rapid-frozen axons. J Cell Biol 94:667–679, 1982

    PubMed  CAS  Google Scholar 

  4. Henderson D, Geisler N, Weber K: A periodic ultrastructure in intermediate filaments. J Mol Biol 155:173–176, 1982

    PubMed  CAS  Google Scholar 

  5. Milam L, Erickson HP: Visualization of a 21-nm axial periodicity in shadowed keratin filaments and neurofilaments. J Cell Biol 94:592–596, 1982

    PubMed  CAS  Google Scholar 

  6. Kaufmann E, Geisler N, Weber K: SDS-PAGE strongly overestimates the molecular masses of the neurofilament proteins, FEBS Letters 170:81–84, 1984

    PubMed  CAS  Google Scholar 

  7. Steinert PM, Parry, DAD: Intermediate filaments: Conformity and diversity of expression and structure. Annu Rev Cell Biol 1:41–65, 1985

    PubMed  CAS  Google Scholar 

  8. Weber K, Geisler N: Intermediate filaments: Structural conservation and divergence, Ann NY Acad Sci 455:126–143, 1985

    PubMed  CAS  Google Scholar 

  9. Geisler N, Kaufmann E, Fischer S, et al: Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins. EMBO J 2:1295–1302, 1983

    PubMed  CAS  Google Scholar 

  10. Pruss RM, Mirsky R, Raff MC et al: All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody. Cell 27:419–428, 1981

    PubMed  CAS  Google Scholar 

  11. McKeon FD, Kirschner MW, Caput D: Homologies in both primary and secondary structures between nuclear envelope and intermediate filament proteins. Nature 319:463–468,1986

    PubMed  CAS  Google Scholar 

  12. Fisher DZ, Chaudhary N, Blobel G: cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins. Proc Natl Acad Sci USA 83:6450–6454, 1986

    PubMed  CAS  Google Scholar 

  13. Gerace L: Nuclear lamina and organization of nuclear architecture, TIBS, November 1986, pp 443–446

    Google Scholar 

  14. Parry DAD, Steven AC, Steinert PM: The coiled-coil molecule of intermediate filaments consists of two parallel chains in exact axial register. Biochem Biophys Res Comm 127:1012–1018, 1985

    PubMed  CAS  Google Scholar 

  15. Weber K, Geisler N: Intermediate filaments — from wool α-keratins to neurofilaments: A structural overview, in Cancer Cells 1, The Transformed Phenotype, Cold Spring Harbor, Cold Spring Harbor Lab, 1984, pp 153–159

    Google Scholar 

  16. Geisler N, Kaufmann E, Weber K: Antiparallel orientation of the two double-stranded coiled-coils in the tetrameric protofilament unit of intermediate filaments. J Mol Biol 182:173–177, 1985

    PubMed  CAS  Google Scholar 

  17. Geisler N, Fischer S, Vandekerckhove J, et al: Hybrid character of a large neurofilament protein (NF-M): Intermediate filament type sequence followed by a long and acidic carboxy-terminal extension. EMBO J 3:2701–2706, 1984

    PubMed  CAS  Google Scholar 

  18. Geisler N, Fischer S, Vandekerckhove J, et al: Protein-chemical characterization of NF-H, the largest mammalian neurofilament component; intermediate filament-type sequences followed by a unique carboxyterminal extension. EMBO J 4:57–63, 1985

    PubMed  CAS  Google Scholar 

  19. Willard M, Simon C: Antibody decoration of neurofilaments. J Cell Biol 89:198–205, 1981

    PubMed  CAS  Google Scholar 

  20. Geisler N, Weber K: Self-assembly in vitro of the 68,000 molecular weight component of the mammalian neurofilament triplet protein into intermediate-sized filaments. J Mol Biol 151:565–571, 1981

    PubMed  CAS  Google Scholar 

  21. Liem RKH, Hutchinson SB: Purification of individual components of the neurofilament triplet: Filament assembly from the 70,000-dalton subunit. Biochemistry 21:3221–3226, 1982

    PubMed  CAS  Google Scholar 

  22. Zackroff RV, Idler WW, Steinert PM, et al: in vitro reconstitution of intermediate filament from mammalian neurofilament triplet polypeptides. Proc Natl Acad Sci USA 79:754–757, 1982

    PubMed  CAS  Google Scholar 

  23. Gardner EE, Dahl D, Bignami A: Formation of 10-nanometer filaments from the 150 k-dalton neurofilament protein in vitro. J Neurosci Res 11:145–155, 1984

    PubMed  CAS  Google Scholar 

  24. Minami Y, Endo S, Sakai H: Participation of 200K or 150K subunit of neurofilament in construction of the filament core with 70K subunit and promotion of tubulin polymerization by incorporated 200K subunit. J Biochem 96:1481–1490, 1984

    PubMed  CAS  Google Scholar 

  25. Kaufmann E, Weber K, Geisler N: Intermediate filament forming ability of desmin derivatives lacking either the amino-terminal 67 or the carboxy-terminal 27 residues. J Mol Biol 185:733–742, 1985

    PubMed  CAS  Google Scholar 

  26. Georges E, Lefebvre S, Mushynski WE: Dephosphorylation of neurofilaments by exogenous phosphatases has no effect on reassembly of subunits. J Neurochem 47:477–483, 1986

    PubMed  CAS  Google Scholar 

  27. Black MM, Keyser P, Sobel E: Interval between the synthesis and assembly of cytoskeletal proteins in cultured neuron. J Neurosci 6:1004–1012, 1986

    PubMed  CAS  Google Scholar 

  28. Hirokawa N, Glicksman MA, and Willard MB: Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton. J Cell Biol 98:1523–1536, 1984

    PubMed  CAS  Google Scholar 

  29. Heimann R, Shelanski ML, Liem RKH: Microtubule-associated protein bind specifically to the 70-kDa neurofilament protein. J Biol Chem 260:12160–12166, 1985

    PubMed  CAS  Google Scholar 

  30. Miyata Y, Hoshi M, Nishida E, et al: Binding of microtubule-associated protein 2 and tau to the intermediate filament reassembled from neurofilament 70-kDa subunit protein. J Biol Chem 261:13026–13030, 1986

    PubMed  CAS  Google Scholar 

  31. Bloom GS, Luca FC, Vallee RB: Cross-linking of intermediate filaments to microtubules by microtubule-associated protein 2. Ann NY Acad Sci 455:18–31, 1985

    PubMed  CAS  Google Scholar 

  32. Papasozomenos SC, Binder LI, Bender PK et al: Microtubule-associated protein 2 within axons of spinal motor neurons: associations with microtublues and neurofilaments in normal and β,β’-iminodipropionitrile-treated axons. J Cell Biol 100:74–85, 1985

    PubMed  CAS  Google Scholar 

  33. Aamodt EJ, Williams RC: Microtublue-associated protein connect microtubules and neurofilaments in vitro. Biochemistry 23:6023–6031, 1984

    PubMed  CAS  Google Scholar 

  34. Lazarides E: Intermediate filaments: A chemically heterogenous, developmentally regulated class of proteins. Annu Rev Biochem 51:219–250, 1982

    PubMed  CAS  Google Scholar 

  35. Jones SM, Williams RC: Phosphate content of mammalian neurofilaments. J Biol Chem 257:9902–9905, 1982

    PubMed  CAS  Google Scholar 

  36. Wong J, Hutchison SB, Liem RKH: An isoelectric variant of the 150,000-dalton neurofilament polypeptide: Evidence that phosphorylation state affects its association with the filament. J Biol Chem 259:10867–10874, 1984

    PubMed  CAS  Google Scholar 

  37. Carden MJ, Schlaepfer WW, Lee VMY: The structure, biochemical properties, and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state. J Biol Chem 260:9805–9817, 1985

    PubMed  CAS  Google Scholar 

  38. Julien JP, Mushynski WE: Multiple phosphorylation sites in mammalian neurofilament polypeptides. J Biol Chem 257:10467–10470, 1982

    PubMed  CAS  Google Scholar 

  39. Shecket G, Lasek RJ: Neurofilament protein phosphorylation: Species generality and reaction characteristics. J Biol Chem 257:4788–4795, 1982

    PubMed  CAS  Google Scholar 

  40. Napolitano EW, Chin SSM, Colman DR et al: Characterization, in vitro expression and complete amino acid sequence of rat NF-M, the middle molecular weight neurofilament protein, using specific cDNA clones. J Neurosci in press

    Google Scholar 

  41. Sternberger LA, Sternberger NH: Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci USA 80:6126–6130, 1983

    PubMed  CAS  Google Scholar 

  42. Bennett GS, DiLullo C: Slow posttranslational modification of a neurofilament protein J Cell Biol 100:1799–1804, 1985

    PubMed  CAS  Google Scholar 

  43. Blikstad I, Lazarides E: Vimentin filaments are assembled from a soluble precursor in avian erythroid cells. J Cell Biol 96:1803–1808,1983

    PubMed  CAS  Google Scholar 

  44. Steinert PM, Wantz ML, Idler WW: O-Phosphoserine content of intermediate filament subunits. Biochemistry 21:177–183, 1982

    PubMed  CAS  Google Scholar 

  45. Nixon RA, Brown BA, Marotta CA: Posttranslational modification of a neurofilament protein during axoplasmic transport: Implications for regional specialization of CNS axons. J Cell Biol 94:150–158, 1982

    PubMed  CAS  Google Scholar 

  46. Leterrier JF, Liem RKH, Shelanski ML: Preferential phosphorylation of the 150,000 molecular weight component of neurofilament by a cyclic AMP-dependent, microtubule-associated protein kinase. J Cell Biol 90:755–760, 1981

    PubMed  CAS  Google Scholar 

  47. Julien JP, Smoluk GD, Mushynski WE: Characterization of the protein kinase activity associated with rat neurofilament preparations. Biochem Biophys Acta 755:25–31, 1983

    PubMed  CAS  Google Scholar 

  48. Schlaepfer WW: Calcium-induced degeneration of axoplasm in isolated segment of rat peripheral nerve. Brain Res 69:203–215, 1974

    PubMed  CAS  Google Scholar 

  49. Schlaepfer WW: Structural alterations of peripheral nerve induced by the calcium ionophore A23187. Brain Res 136:1–9, 1977

    PubMed  CAS  Google Scholar 

  50. Pant HC, Terakawa S, Gainer H: A calcium activated protease in squid axoplasm. J Neurochem 32:99–102, 1979

    PubMed  CAS  Google Scholar 

  51. Pant HC, Gainer H: Properties of a calciun-activated protease in squid axoplasm which selectively degrades neurofilament proteins. J Neurobiol 11:1–12,1980

    PubMed  CAS  Google Scholar 

  52. Schlaepfer WW, Zimmerman VJP: Calcium-mediated breakdown of glial filaments and neurofilaments in rat optic nerve and spinal cord. Neurochem Res 6:243–255, 1981

    PubMed  CAS  Google Scholar 

  53. Zimmerman VJP, Schlaepfer WW: Characterization of a brain calcium-activated protease that degrades neurofilament proteins. Biochemistry 21:3977–3983, 1982

    PubMed  CAS  Google Scholar 

  54. Ishizaki Y, Tashiro T, Kurokawa M: A calcium-activated protease which preferentially degrades the 160-kDa component of the neurofilament triplet. Eur J Biochem 131:41–45, 1983

    PubMed  CAS  Google Scholar 

  55. Gallant PE, Pant HC, Pruss RM, et al: Calcium-activated proteolysis of neurofilament proteins in the squid giant neuron. J Neurochem 46:1573–1581, 1986

    PubMed  CAS  Google Scholar 

  56. Nixon RA, Quackenbush R, Vitto A: Multiple calciumactivated neutral proteinases (CANP) in mouse retinal ganglion cell neurons: Specificities for endogenous neuronal substrates and comparison to purified brain CANP. J Neurosci 6:1252–1263, 1986

    PubMed  CAS  Google Scholar 

  57. Vitto A, Nixon RA: Calcium-activated neutral proteinases of human brain: Subunit structure and enzymatic properties of multiple molecular forms. J Neurochem 47:1039–1051, 1986

    PubMed  CAS  Google Scholar 

  58. Nelson WJ, Traub P: Purification and further characterization of the Ca2+-activated proteinase specific for the intermediate filament proteins vimentin and desmin. J Biol Chem 257:5544–5553, 1982

    PubMed  CAS  Google Scholar 

  59. Ishiura S: Calcium-dependent proteolysis in living cells. Life Sci 29:1079–1087, 1981

    PubMed  CAS  Google Scholar 

  60. Kishimoto A, Kajikawa N, Tabuchi H, et al: Calcium-dependent neutral proteases, widespread occurrence of a species of protease active at lower concentrations of calcium. J Biochem 90:889–892, 1981

    PubMed  CAS  Google Scholar 

  61. Murachi T: Intracellular Ca2+-protease and its inhibitor protein, calpain and calpastatin, in Cheung WY (ed): Calcium and Cell function, Vol 4, New York, Academic Press, 1983, pp 377–419

    Google Scholar 

  62. Lasek RJ, Black MM: How do axons stop growing? Some clues from the metabolism of the protein in the slow component of axonal transport, in Roberts S, Lajtha A, Gispen WH (eds): Mechanism, Regulation and Special Functions of Protein Synthesis in the Brain, New York, Elsevier-North Holland Biomedical Press, 1977, pp 161–169

    Google Scholar 

  63. Lasek RJ, Hoffman PN: The neuronal cytoskeleton, axonal transport and axonal growth, in Goldman R, Pollard T, Rosenbaum E (eds): Cell Motility, New York, Cold Spring Harbor Laboratory 1976 pp 1021–1049

    Google Scholar 

  64. Roots BI: Neurofilament accumulation induced in synapses by leupeptin. Science 221:971–972, 1983

    PubMed  CAS  Google Scholar 

  65. Nixon RA, Brown BA, Marotta CA: Limited proteolytic modification of a neurofilament protein involves a proteinase activated by endogenous levels of calcium. Brain Res 275:384–388, 1983

    PubMed  CAS  Google Scholar 

  66. Hamakubo T, Kannagi R, Murachi T, et al: Distribution of calpains I and II in rat brain. J Neurosci 6:3103–3111, 1986

    PubMed  CAS  Google Scholar 

  67. Nixon RA, Marotta CA: Degradation of neurofilament proteins by purified human brain cathepsin D. J Neurochem 43:507–516, 1984

    PubMed  CAS  Google Scholar 

  68. Hanukoglu I, Fuchs E: The cDNA sequence of a human epidermal keratin: divergence of sequence but conservation of structure among intermediate filament proteins. Cell 31:243–252, 1982

    PubMed  CAS  Google Scholar 

  69. Hanukoglu I, Fuchs E: The cDNA sequence of a type II cytoskeletal keratin reveals constant and variable structural domains among keratins. Cell 33:915–924, 1983

    PubMed  CAS  Google Scholar 

  70. Quax W, Egberts WV, Hendricks W, et al: The structure of the vimentin gene. Cell 35:215–223, 1983

    PubMed  CAS  Google Scholar 

  71. Lewis SA, Balcarek JM, Krek V, et al: Sequence of a cDNA clone encoding mouse glial fibrillary acidic protein: Structural conservation of intermediate filaments. Proc Natl Acad Sci USA 81:2743–2746, 1984

    PubMed  CAS  Google Scholar 

  72. Quax W, van den Broek L, Egberts WV, et al: Characterization of the hamster desmin gene: Expression and formation of desmin filaments in nonmuscle cells after gene transfer. Cell 43:327–338, 1985

    PubMed  CAS  Google Scholar 

  73. Steinert PM, Parry DAD, Racoosin EL, et al: The complete cDNA and deduced amino acid sequence of a Type II mouse epidermal keratin of 60,000 Da: Analysis of sequence differences between Type I and Type II keratins. Proc Natl Acad Sci USA 81:5709–5713, 1984

    PubMed  CAS  Google Scholar 

  74. Zehner ZE, Paterson BM: Characterization of the chicken vimentin gene: single copy gene producing multiple mRNAs. Proc Natl Acad Sci USA 80:911–915, 1983

    PubMed  CAS  Google Scholar 

  75. Geisler N, Plessmann U, Weber K: The complete amino acid sequence of the major mammalian neurofilament protein (NF-L). FEBS Letters 182:475–478, 1985

    PubMed  CAS  Google Scholar 

  76. Lewis SA, Cowan NJ: Genetics, evolution, and expression of the 68,000-mol-wt neurofilament protein: Isolation of a cloned cDNA probe. J Cell Biol 100:843–850, 1985

    PubMed  CAS  Google Scholar 

  77. Julien JP, Ramachandran K, Grosveld F: Cloning of a cDNA encoding the smallest neurofilament protein from the rat. Biochim Biophys Acta 825:398–404, 1985

    PubMed  CAS  Google Scholar 

  78. Lieberburg I, Lappin I, Davies P, et al: Molecular cloning of a cDNA coding for a high molecular weight neurofilament peptide. J Cell Biol 101:17a, 1985

    Google Scholar 

  79. Robinson PA, Wion D, Anderton BH: Isolation of a cDNA for the rat heavy neurofilament polypeptide (NF-H). FEBS Letters 209:203–205, 1986

    PubMed  CAS  Google Scholar 

  80. Lewis SA, Cowan NJ: Anomalous placement of introns in a member of the intermediate filament multigene family: An evolutionary conundrum. Mol Cell Biol 6:1529–1534, 1986

    PubMed  CAS  Google Scholar 

  81. Levy E, Liem RKH, D’Eustachio P, et al: Structure and evolutionary origin of the gene encoding mouse NF-M, the middle molecular weight neurofilament protein. Eur J Biochem in press

    Google Scholar 

  82. Trojanowski JQ, Walkenstein N, Lee VMY: Expression of neurofilament subunits in neurons of the central and peripheral nervous system: An immunohistochemical study with monoclonal antibodies. J Neurosci 6:650–660, 1986

    PubMed  CAS  Google Scholar 

  83. Sharp GA, Shaw G, Weber K: Immunoelectronmicroscopical localization of the three neurofilament triplet proteins along neurofilaments of cultured dorsal root ganglion neurones. Exp Cell Res 137:403–413, 1982

    PubMed  CAS  Google Scholar 

  84. Lawson SN, Harper AA, Harper EI, et al: A monoclonal antibody against neurofilament protein specically labels a subpopulation of rat sensory neurons. J Comp Neurol 228:263–272, 1984

    PubMed  CAS  Google Scholar 

  85. Kai-Kai MA, Anderton BH, Keen P: A quantitative analysis of the interrelationships between subpopulations of rat sensory neurons containing arginine vasopressin or oxytocin and those containing substance P, fluoride-resistant acid phosphatase or neurofilament protein. Neuroscience 18:475–486, 1986

    PubMed  CAS  Google Scholar 

  86. Drake PF, Lasek RJ: Regional differences in the neuronal cytoskeleton. J Neurosci 4:1173–1186, 1984

    PubMed  CAS  Google Scholar 

  87. Shaw G, Weber K: The distribution of the neurofilament triplet protein within individual neurones. Exp Cell Res 136:119–125, 1981

    PubMed  CAS  Google Scholar 

  88. Dahl D: Immunohistochemical differences between neurofilaments in perikarya, dendrites and axons. Exp Cell Res 149:397–408, 1983

    PubMed  CAS  Google Scholar 

  89. Bennett GS, Tapscott SJ, DiLullo, C, et al: Differential binding of antibodies against the neurofilament triplet proteins in different avian neurons. Brain Res 304:291–302, 1984

    PubMed  CAS  Google Scholar 

  90. Lee, VMY, Carden MJ, Trojanowski JQ: Novel monoclonal antibodies provide evidence for the in situ existence of a nonphosphorylated form of the largest neurofilament subunit. J Neurosci 6:850–858, 1986

    PubMed  CAS  Google Scholar 

  91. Tapscott SJ, Bennett GS, Toyama Y, et al: Intermediate filament proteins in the developing chick spinal cord. Dev Biol 86:40–54, 1981

    PubMed  CAS  Google Scholar 

  92. Raju T, Bignami A, Dahl D: In vivo and in vitro differentiation of neurons and astrocytes in the rat embryo. Dev Biol 85:344–357, 1981

    PubMed  CAS  Google Scholar 

  93. Jacobs M, Choo QL, Thomas C: Vimentin and 70K neurofilament protein co-exist in embryonic neurones from spinal ganglia. J Neurochem 38:969–977, 1982

    PubMed  CAS  Google Scholar 

  94. Shaw G, Weber K: Differential expression of neurofilament triplet proteins in brain development. Nature 298:277–279, 1982

    PubMed  CAS  Google Scholar 

  95. Shaw G, Weber K: The structure and development of the rat retina; an immunofluorescence microscopical study using antibodies specific for intermediate filament proteins. Eur J Cell Biol 30:219–232, 1983

    PubMed  CAS  Google Scholar 

  96. Cochard P, Paulin D: Initial expression of neurofilaments and vimentin in the central and peripheral nervous system of the mouse embryo in vivo. J Neurosci 4:2080–2094, 1984

    PubMed  CAS  Google Scholar 

  97. Pachter JS, Liem RKH: The differential appearance of neurofilament triplet polypeptides in the developing rat optic nerve. Dev Biol 103:200–210, 1984

    PubMed  CAS  Google Scholar 

  98. Drager UC: Coexistence of neurofilaments and vimentin in a neurone of adult mouse retina. Nature 303:169–172, 1983

    PubMed  CAS  Google Scholar 

  99. Shaw G, Weber K: The intermediate filament complement of the retina: A comparison between different mammalian species. Eur J Cell Biol 33:95–104, 1984

    PubMed  CAS  Google Scholar 

  100. Bader MF, Georges E, Mushynski WE, et al: Neurofilament proteins in cultured chromaffin cells. J Neurochem 43:1180–1193, 1984

    PubMed  CAS  Google Scholar 

  101. Granger BL, Lazarides E: Expression of the major neurofilament subunit in chicken erythrocytes. Science 221:553–556, 1983

    PubMed  CAS  Google Scholar 

  102. Bennett GS, DiLullo C: Transient expression of a neurofilament protein by replicating neuroepithelial cells of the embryonic chick brain. Dev Biol 107:107–127, 1985

    PubMed  CAS  Google Scholar 

  103. Osborn M, Altmannsberger M, Shaw G, et al: Various sympathetic derived human tumors differ in neurofilament expression. Virchows Arch B 40:141–156, 1982

    PubMed  CAS  Google Scholar 

  104. Trojanowski JQ, Lee VMY, Schlaepfer WW: An immunohistochemical study of human central and peripheral nervous system tumors, using monoclonal antibodies against neurofilaments and glial filaments. Human Pathol 15:248–257, 1984

    CAS  Google Scholar 

  105. Dahl D, Bignami A: Neurofilament protein in clonal lines of mouse neuroblastoma. Dev Neurosci 1:142–152, 1978

    PubMed  CAS  Google Scholar 

  106. Dahl D, Rustigian R, Bignami A: Expression of the 70 Kdalton neurofilament protein in clonal lines of mouse neuroblastoma. Brain Res 299:354–357, 1984

    PubMed  CAS  Google Scholar 

  107. Lee V, Trojanowski JQ, Schlaepfer WW: Induction of neurofilament triplet proteins in PC12 cells by nerve growth factor. Brain Res 238:169–180, 1982

    PubMed  CAS  Google Scholar 

  108. Lee VMY, Page C: The dynamics of nerve growth factor-induced neurofilaments and vimentin filament expression and organization in PC12 cells. J Neurosci 4:1705–1714, 1984

    PubMed  CAS  Google Scholar 

  109. Lee VMY, Andrews PW: Differentiation of NTERA-2 clonal human embryonal carcinoma cells into neurons involves the induction of all three neurofilament proteins. J Neurosci 6:514–521, 1986

    PubMed  CAS  Google Scholar 

  110. Broers JLV, Carney DN, Rot MK, et al: Intermediate filament proteins in classic and variant types of small cell lung carcinoma cell lines: A biochemical and immunochemical analysis using a panel of monoclonal and polyclonal antibodies. J Cell Sci 83:37–60, 1986

    PubMed  CAS  Google Scholar 

  111. Eagles PAM, Gilbert S, Maggs A: The polypeptide composition of axoplasm and of neurofilaments from the marine worm Myxicola infundibulum. Biochem J 199:89–100, 1981

    PubMed  CAS  Google Scholar 

  112. Shaw G, Debus E, Weber, K: The immunological relatedness of neurofilament proteins of higher vertebrates. Eur J Cell Biol 34:130–138, 1984

    PubMed  CAS  Google Scholar 

  113. Lasek RJ, Phillips L, Katz MJ, et al: Function and evolution of neurofilament proteins. Ann NY Acad Sci 455:462–478, 1985

    PubMed  CAS  Google Scholar 

  114. Gambetti P, Autilio-Gambetti L, Papasozomenos SC: Bodian’s silver method stains neurofilament polypeptides. Science 213:1521–1522, 1981

    PubMed  CAS  Google Scholar 

  115. Phillips LL, Autilio-Gambetti L, Lasek RJ: Bodian’s silver method reveals molecular variation in the evolution of neurofilament proteins. Brain Res 278:219–223, 1983

    PubMed  CAS  Google Scholar 

  116. Grafstein B, Forman DS: Intracellular transport in neurons. Physiol Reviews 60:1167–1283, 1980

    CAS  Google Scholar 

  117. Lasek RJ, Garner JA, Brady ST: Axonal transport of the cytoplasmic matrix. J Cell Biol 99:212s–221s, 1984

    PubMed  CAS  Google Scholar 

  118. Black MM, Lasek RJ: Slow components of axonal transport: Two cytoskeletal networks. J Cell Biol 86:616–623, 1980

    PubMed  CAS  Google Scholar 

  119. Hoffman PN, Lasek RJ: The slow component of axonal transport: Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol 66:351–366, 1975

    PubMed  CAS  Google Scholar 

  120. McQuarrie IG, Brady ST, Lasek RJ: Diversity in the axonal transport of structural proteins: Major differences between optic and spinal axons in the rat. J Neurosci 6:1593–1605, 1986

    PubMed  CAS  Google Scholar 

  121. Oblinger MM, Brady ST, McQuarrie IG, et al: Cytotypic differences in the protein composition of the axonally transported cytoskeleton in mammalian neurons. J Neurosci 7:453–462, 1987

    PubMed  CAS  Google Scholar 

  122. Allen RD, Weiss DG, Hayden JH, et al: Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: Evidence for an active role of microtubules in cytoplasmic transport. J Cell Biol 100:1736–1752, 1985

    PubMed  CAS  Google Scholar 

  123. Vale RD, Reese TS, Sheetz MP: Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50, 1985

    PubMed  CAS  Google Scholar 

  124. Papasozomenos SC, Yoon M, Crane R, et al: Redistribution of protein of fast axonal transport following adminstration of β,β’-iminodipropionitrile: A quantitative autoradiographic study. J Cell Biol 95:672–675, 1982

    PubMed  CAS  Google Scholar 

  125. Griffin JW, Fahnestock KE, Price, et al: Microtubuleneurofilamnet segregation produced by β,β’-iminodipropionitrile: Evidence for the association of fast axon transport with microtubules. J Neurosci 3:557–566, 1983

    PubMed  CAS  Google Scholar 

  126. Hirokawa N, Bloom GS, Vallee RB: Cytoskeletal architecture and immunocytochemical localization of microtubule-associated protein in regions of axons associated with rapid axonal transport: The β,β’-iminodipropionitrile-intoxicated axon as a model system. J Cell Biol 101:227–239, 1985

    PubMed  CAS  Google Scholar 

  127. Hendrickson AE, Cowan WM: Changes in the rate of axoplasmic transport during postnatal development of the rabbit’s optic nerve and tract. Exp Neurol 30:403–422, 1971

    PubMed  CAS  Google Scholar 

  128. Willard M, Simon C: Modulations of neurofilament axonal transport during the development of rabbit retinal ganglion cells. Cell 35:551–559, 1983

    PubMed  CAS  Google Scholar 

  129. Nixon RA, Logvinenko KB: Multiple fates of newly synthesized neurofilament proteins: Evidence for a stationary neurofilament network distributed nonuniformly along axons of retinal ganglion cell neurons. J Cell Biol 102:647–659, 1986

    PubMed  CAS  Google Scholar 

  130. Friede RL, Samorajski T: Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat Rec 167:379–388, 1970

    PubMed  CAS  Google Scholar 

  131. Friede RL: Changes in microtubules and neurofilaments in constricted, hypoplastic nerve fibers. Acta Neuropath (Berl) Suppl 5:216–225, 1971

    Google Scholar 

  132. Hoffman PN, Griffin JW, Price DL: Contol of axonal caliber by neurofilament transport. J Cell Biol 99:705–714, 1984

    PubMed  CAS  Google Scholar 

  133. Hoffman PN, Thompson GW, Griffin JW, et al: Changes in neurofilament transport coincide temporally with alterations in the caliber of axons in regenerating motor fibers. J Cell Biol 101:1332–1340, 1985

    PubMed  CAS  Google Scholar 

  134. Nukada H, Dyck PJ, Low PA, et al: Axonal caliber and neurofilaments are proportionately decreased in galactose neuropathy. J Neuropath Exp Neurol 45:140–150, 1986

    PubMed  CAS  Google Scholar 

  135. Nukada H, Dyck PJ: Decreased axon caliber and neurofilaments in hereditary motor and sensory neuropathy, type I. Ann Neurol 16:238–241, 1984

    PubMed  CAS  Google Scholar 

  136. Price DL: New perspectives on Alzheimer’s disease. Annu Rev Neurosci 9:489–512, 1986

    PubMed  CAS  Google Scholar 

  137. Goldman JE, Yen SH, Chiu FC, et al: Lewy bodies of Parkinson’s disease contain neurofilament antigens. Science 221:1082–1084, 1983

    PubMed  CAS  Google Scholar 

  138. Hirano A, Donnenfeld H, Sasaki S et al: Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43:461–470, 1984

    PubMed  CAS  Google Scholar 

  139. Hirano A, Nakano I, Kurland LT, et al: Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43:471–480, 1984

    PubMed  CAS  Google Scholar 

  140. Perl DP, Gajdusek DC, Garruto RM, et al: Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and parkinsonism-dementia of Guam. Science 217:1053–1055, 1982

    PubMed  CAS  Google Scholar 

  141. Anderton BH, Breinburg D, Downes MJ, et al: Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants. Nature 298:84–86, 1982

    PubMed  CAS  Google Scholar 

  142. Rasool CG, Selkoe DJ: Sharing of specific antigens by degenerating neurons in Pick’s disease. New Engl J Med 312:700–705, 1985

    PubMed  CAS  Google Scholar 

  143. Peiffer J, Scholte W, Bishoff A, et al: Generalized giant axonal neuropathy — a filament-forming disease of neuronal, endothelial, glial and Schwaan cells in a patient without kinky hair. Acta Neuropathol 40:213–218, 1977

    PubMed  CAS  Google Scholar 

  144. Yen SHC, Gaskin F, Terry RD: Immunocytochemical studies of neurofibrillary tangles. Am J Pathol 104:77–89, 1981

    PubMed  CAS  Google Scholar 

  145. Dahl D, Selkoe DJ, Pero RT, et al: Immunostaining of neurofibrillary tangles in Alzheimer’s senile dementia with a neurofilament antiserum. J Neurosci 2:113–119, 1982

    PubMed  CAS  Google Scholar 

  146. Gambetti P, Shecket G, Ghetti B, et al: Neurofibrillary changes in human brain: An immunocytochemical study with a neurofilament antiserum. J Neuropathol Exp Neurol 42:69–79, 1983

    PubMed  CAS  Google Scholar 

  147. Cork LC, Sternberger NH, Sternberger LA, et al: Phosphorylated neurofilament antigens in neurofibrillary tangles in Alzheimer’s disease. J Neuropathol Exp Neurol 45:56–64, 1986

    PubMed  CAS  Google Scholar 

  148. Wischik CM, Crowther RA, Stewart M, et al: Subunit structure of paired helical filaments in Alzheimer’s disease. J Cell Biol 100:1905–1912, 1985

    PubMed  CAS  Google Scholar 

  149. Selkoe DJ, Ihara Y, Salazar FJ: Alzheimer’s disease: Insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea. Science 215:1243–1245, 1982

    PubMed  CAS  Google Scholar 

  150. Perry G, Rizzuto N, Autilio-Gambetti L, et al: Paired helical filaments from Alzheimer disease patients contain cytoskeletal components. Proc Natl Acad Sci USA 82:3916–3920, 1985

    PubMed  CAS  Google Scholar 

  151. Kosik KS, Duffy LK, Dowling MM, et al: microtubule-associated protein 2: Monoclonal antibodies demonstrate the selective incorporation of certain epitopes into Alzheimer neurofibrillary tangles. Proc Natl Acad Sci USA 81:7941–7945, 1984

    PubMed  CAS  Google Scholar 

  152. Grundke-Iqbal I, Iqbal K, Tung YC, et al: Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917, 1986

    PubMed  CAS  Google Scholar 

  153. Ihara Y, Nukina N, Miura R, et al: Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer’s disease. J Biochem 99:1807–1810, 1986

    PubMed  CAS  Google Scholar 

  154. Griffin JW, Price DL, Hoffman PN: Neurotoxic probes of the axonal cytoskeleton. Trends in Neurosci December 1983, pp 490–495

    Google Scholar 

  155. Bisby MA, Redshaw JD: Acrylamide neuropathy: Changes in the composition of proteins of fast axonal transport resemble those observed in regenerating axons. J Neurochem 48:924–928, 1987

    PubMed  CAS  Google Scholar 

  156. Monaco S, Autilio-Gambetti L, Zabel D, et al: Giant axonal neuropathy: Acceleration of neurofilament transport in optic axons. Proc Natl Acad Sci USA 82:920–924, 1985

    PubMed  CAS  Google Scholar 

  157. Troncoso JC, Hoffman PN, Griffin JW, et al: Aluminum intoxication: A disorder of neurofilament transport in motor neurons. Brain Res 342:172–175, 1985

    PubMed  CAS  Google Scholar 

  158. Hoffman PN, Clark AW, Carroll PT, et al: Slow axonal transport of neurofilament proteins: Impairment by, β,β’-iminodipropionitrile administration. Science 202:633–635, 1978

    PubMed  Google Scholar 

  159. Gajdusek DC: Hypothesis: Interference with axonal transport of neurofilaments as a common pathogenetic mechanism in certain diseases of the central nervous system. New Engl J Med 312:714–719, 1985

    PubMed  CAS  Google Scholar 

  160. Graham DG, Szakal-Quin G, Priest JW, et al: In vitro evidence that covalent crossslinking of neurofilaments occurs in γ-diketone neuropathy. Proc Natl Acad Sci USA 81:4979–4982, 1984

    PubMed  CAS  Google Scholar 

  161. Lapadula DM, Irwin RD, Suwita E, et al: Cross-linking of neurofilament proteins of rat spinal cord in vivo after administration of 2,5-hexandione. J Neurochem 46:1843–1850, 1986

    PubMed  CAS  Google Scholar 

  162. Sotelo J, Gibbs CJ, Gajdusek DL: Autoantibodies against axonal neurofilaments in patients with kuru and Creutzfeldt-Jakob disease. Science 210:190–193, 1980

    PubMed  CAS  Google Scholar 

  163. Bahmanyar S, Liem RKH, Griffin JW, et al: Characterization of antineurofilament autoantibodies in Creutfeldt-Jakob disease. J Neuropathol Exp Neurol 43:369–375, 1984

    PubMed  CAS  Google Scholar 

  164. Toh BH, Gibbs CJ, Gajdusek DC, et al: The 200-and 150-kDa neurofilament protein react with IgG autoantibodies from chimpanzees with kuru or Creutzfeldt-Jakob disease; a 62-kDa neurofilament-associated protein reacts with sera from sheep with natural scrapie. Proc Natl Acad Sci USA 82:3894–3896, 1985

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Chin, S.S.M., Liem, R.K.H. (1987). Neurofilaments: A Review and Update. In: Perry, G. (eds) Alterations in the Neuronal Cytoskeleton in Alzheimer Disease. Advances in Behavioral Biology, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1657-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1657-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8920-3

  • Online ISBN: 978-1-4613-1657-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics