Skip to main content

Neuroanatomical, Neurophysiological, and Neurochemical Basis of Pain

  • Chapter
  • 94 Accesses

Part of the book series: Topics in Neurosurgery ((TINS,volume 3))

Abstract

Pain can be defined as the experience produced when a part of the body is physically damaged. The perception and discrimination of pain is distinct from distress or suffering, which may relate to an emotional experience. This chapter concerns itself with the neural substrate for the production of the sensation termed pain. Sherrington observed that pain usually accompanies tissue injury [1]. Tissue damage represented the common denominator for stimuli evoking pain, and he suggested the label noxious for these stimuli. The function of these neural systems was felt to be protective, and Sherrington thought that they were activated by the threat of damage. The proposed peripheral detectors of pain were termed nociceptors. Decades of study have determined a great deal regarding the mechanisms of nociception.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sherrington CS: The Integrative Action of the Nervous System. Charles Scribner’s Sons, New York, 1906.

    Google Scholar 

  2. Head H, Rivers WHR, Sherren J: The afferent nervous system from a new aspect. Brain 28:99–15, 1905.

    Article  Google Scholar 

  3. Ranson SW: Unmyelinated nerve fibers as conductors of protopathic sensation. Brain 38:381–389, 1915.

    Article  Google Scholar 

  4. Lewis T, Pickering GW, Rothschild P: Centripetal paralysis arising out of arrested blood flow to the limb, including notes on a form of tingling Heart 16:1–32, 1931.

    Google Scholar 

  5. Zotterman Y: Studies in the peripheral nervous mechanism of pain. Acta Med Scand 80:185–242, 1933.

    Google Scholar 

  6. Heinbecker P, Bishop GH, O’Leary J: Pain and touch fibers in peripheral nerves.

    Google Scholar 

  7. Clark D, Hughes J, and Gasser HS: Afferent function in the group of nerve fibers of slowest conduction velocity.

    Google Scholar 

  8. Lewis T, Pochin EE: The double pain response of the human skin to a single stimulus. Clin Sci 3:67–76, 1937.

    Google Scholar 

  9. Landau W, Bishop GH: Pain from dermal, periosteal, and fascial endings and from inflammation. Arch Neurol Pyschiat 69:490–504, 1953.

    CAS  Google Scholar 

  10. Sinclair DC, Hinshaw JR: A comparison of the sensory dissociation produced by procaine and by limb compression. Brain 73: 480–498, 1950.

    Article  PubMed  CAS  Google Scholar 

  11. Collins WF Jr, Nulsen FE, Randt CT: Relation of peripheral nerve fiber size and sensation in man. Arch Neurol 3:381–385, 1960.

    PubMed  Google Scholar 

  12. Willis WD, Coggeshall RE: Sensory Mechanisms in the Spinal Cord. Plenum Press, New York 1978.

    Google Scholar 

  13. Burgess PR, Perl ER: Myelinated afferent fibres responding specifically to noxious stimulation of the skin. J Physiol (Lond) 190:541–562, 1967.

    CAS  Google Scholar 

  14. Perl ER: Myelinated afferent fibres innervating the primate skin and their response to noxious stimuli. J Physiol (Lond) 197: 593–615, 1968.

    CAS  Google Scholar 

  15. Campbell JN, Meyer RA, LaMotte RH: Sensitization of myelinated nociceptive afferents that innervate monkey hand. J Neurophysiol 42:1669–1680, 1979.

    PubMed  CAS  Google Scholar 

  16. Campbell JN, Meyer RA, Jaffe SR: Comparison of the neural mechanisms of hyperalgesia in glabrous and hair skin. Pain (Suppl) 1:99, 1981.

    Google Scholar 

  17. Kumazawa T, Perl ER: Primate cutaneous sensory units with unmyelinated (C) afferent fibers. J Neurophysiol 40:1325–1338, 1977.

    PubMed  CAS  Google Scholar 

  18. King JS, Gallant P, Myerson V, Perl ER: The effects of anti-inflammatory agents on the responses and the sensitization of unmyelinated (C) fiber polymodal nociceptors. In: Sensory Functions of the Skin in Primates, Vol 27, Zotterman, Y, ed. Pergamon Press, Oxford, 1976, pp 441–454.

    Google Scholar 

  19. Perl ER, Kumazawa T, Lynn B, Kenins P: Sensitization of high threshold receptors with unmyelinated C-afferent fibres. In: Somatosensory and Visceral Receptor Mechanisms, Progress in Brain Research, Vol. 43, Iggo A, Ilyensky DB, eds. Elsevier/North Holland, Amsterdam, 1976, pp 265– 277.

    Google Scholar 

  20. Ong B, Singer G, Wallace M: Pain sensations produced by algogens in humans. In: Problems in Pain, Peck C, Wallace M, eds. Pergamon Press, Oxford, 1980, pp 34–43.

    Google Scholar 

  21. Chevy-Croze S, Duclaux R: Discrimination of painful stimuli in human beings. J Neurophysiol 44:1–10, 1980.

    Google Scholar 

  22. Torebjork HE, Hallin RG: Skin receptors supplied by unmyelinated (C) fibres in man. In: Sensory Function of the Skin in Primates, Zotterman Y, ed. Pergamon Press, New York, 1976, pp 475–487.

    Google Scholar 

  23. Torebjork HE, Hallin RG: Perceptual changes accompanying controlled preferential blocking of A and C fibre responses in intact skin nerves. Exp Brain Res 16:321–332, 1973.

    Article  PubMed  CAS  Google Scholar 

  24. Devor M, Janig W: Activation of myelinated afferents ending in a neuroma by stimulation of the sympathetic supply in the rat. Neurosci Lett 24:43–47, 1981.

    Article  PubMed  CAS  Google Scholar 

  25. LaMotte RH, Thalhammer JG, Robinson CJ: Peripheral neural correlates of the magnitude of cutaneous pain and hyperalgesia: A comparison of neural events in monkey with sensory events in human. J Neurophysiol 50:1–26, 1983.

    PubMed  CAS  Google Scholar 

  26. Kruger L, Perl ER, Sedirec MJ: Fine structure of myelinated mechanical nociceptor endings in cat hairy skin. J Comp Neurol 198:137–154, 1981.

    Article  PubMed  CAS  Google Scholar 

  27. Rethelyi M, Light AR, Perl ER: Synaptic complexes formed by functionally defined primary afferent units with fine myelinated fibers. J Comp Neurol 207:381–393, 1982.

    Article  PubMed  CAS  Google Scholar 

  28. Ranson SW: The tract of Lissauer and the substantia gelatinosa Rolandi. Am J Anat 16:97–126, 1914.

    Article  Google Scholar 

  29. Wood JN, Anderton B: Monoclonal antibodies to mammalian neurofilaments. Biosci Rep 1:263–268, 1981.

    Article  PubMed  CAS  Google Scholar 

  30. Hokfelt T, Johansson O, Ljungdahl A, Lundberg JM, Schultzberg M: Peptidergic neurons. Nature 284:515–521, 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Dodd J, Jahr CE, Jessell TM: Neurotransmitters and neuronal markers at sensory synapses in the dorsal horn. In: Advances in Pain Research and Therapy, Vol. 6, Kruger TTTT, and Liebeskind, JC, eds. Raven Press, New York, 1984.

    Google Scholar 

  32. Jessell TM: Substance P in the nervous system. In: Handbook of Psychopharmacology, Vol. 16, Iversen LI, Iverson SD, Snyder SH, eds. Plenum Press, New York, 1983, pp 1–105.

    Google Scholar 

  33. Campbell JN, Meyer RA: Primary afferents and analgesia. In: Spinal Afferent Processing, Yaksh TL, ed. Plenum Press, New York, 1986.

    Google Scholar 

  34. Khan AA, Raja SN, Campbell JN, Hartke TV, Meyer RA: Bradykinin sensitizes nociceptors to heat stimuli. Neurosci Abstr 12:218, 1986.

    Google Scholar 

  35. Manning DC, Snyder SH: 3H-Bradykinin receptor localization in spinal cord and sensory ganglia — evidence for a role in primary afferent function, Neurosci Abstr 9:590, 1983.

    Google Scholar 

  36. Steranka LR, DeHaas CJ, Varrek RJ, Stewart JM, Enna SJ, Snyder SH: Antinociceptive effects of bradykinin antagonists. Eur J Pharm 136:261–262, 1987.

    Article  CAS  Google Scholar 

  37. Wall PD, Devor M: The effect of peripheral nerve injury on dorsal root potentials and on transmission of afferent signals into the spinal cord. Brain Res 209:95–111, 1981.

    Article  PubMed  CAS  Google Scholar 

  38. Wall PD, Gutnich M: Ongoing activity in peripheral nerves, II. The physiology and pharmacology of impulses originating in neuroma. Exp Neurol 43:580–593, 1974.

    Article  PubMed  CAS  Google Scholar 

  39. Seltzer Z, Devor M: Ephaptic transmission in chronically damaged peripheral nerves. Neurology 29:1061–1064, 1979.

    PubMed  CAS  Google Scholar 

  40. Rexed B: The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 96:415–496, 1952.

    Article  Google Scholar 

  41. Gobel S: Golgi studies of the neurons in layer I of the dorsal horn of the medulla (trigeminal nucleus caudalis). J Comp Neurol 180:375–394, 1978.

    Article  PubMed  CAS  Google Scholar 

  42. Light AR, Trevino DL, Perl ER: Morphological features of functionally defined neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn. J Comp Neurol 186:151–172, 1979.

    Article  PubMed  CAS  Google Scholar 

  43. Gobel S: Golgi studies of the neurons in layer II of the dorsal horn of the medulla (trigeminal nucleus caudalis). J Comp Neurol 180:395–413, 1978.

    Article  PubMed  CAS  Google Scholar 

  44. Bennett GJ, Abdelmoumene M, Hayashi H, Dubner R: Physiology and morphology of substantia gelatinosa neurons intracellularly stained with horseradish peroxidase. J Comp Neurol 194:809–827, 1980.

    Article  PubMed  CAS  Google Scholar 

  45. Krieger DT, Brownstein MJ, Martin JB (eds): Brain Peptides, John Wiley and Sons, New York, 1983.

    Google Scholar 

  46. Glazer EJ, Basbaum AI: Immunohistochemical localization of leucine-enkephalin in the spinal cord of the cat: Enkephalin-containing marginal neurons and pain modulation. J Comp Neurol 196:377–390, 1981.

    Article  PubMed  CAS  Google Scholar 

  47. Hokfelt T, Ljungdahl A, Terenius L, Elde R, Nilsson G. Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: Enkephalin and substance P. Proc Natl Acad Sci USA 74:3081–3085, 1977.

    Article  PubMed  CAS  Google Scholar 

  48. Moskowitz AS, Goodman RR: Light microscopic autoradiographic localization of mu and delta opioid binding sites in the mouse central nervous system. J Neurosci 4: 1331–1342, 1984.

    PubMed  CAS  Google Scholar 

  49. Hokfelt T, Terenius L, Kuypers HG, Dann O: Evidence for enkephalin immunoreactive neurons in the medulla oblongata projecting to the spinal cord. Neurosci Lett 14:55–60, 1979.

    Article  PubMed  CAS  Google Scholar 

  50. Duggan AW, Hall JG, Headley PM: Morphine, enkephalin and the substantia gelatinosa. Nature 264:456–458, 1976.

    Article  PubMed  CAS  Google Scholar 

  51. Hamel E, Beaudet A: Electron microscopic autoradiographic localization of opioid receptors in rat neostriatum. Nature 312:155–157, 1984.

    Article  PubMed  CAS  Google Scholar 

  52. Pepper CM, Henderson G: Opiates and opioid peptides hyperpolarize locus coeruleus neurons in vitro. Science 209:394–396, 1980.

    Article  PubMed  CAS  Google Scholar 

  53. Zieglgansberger W, Sutor B: Responses of substantia gelatinosa neurons to putative neurotransmitters in an in vitro preparation of the adult rat spinal cord. Brain Res 279:316–320, 1983.

    Article  PubMed  CAS  Google Scholar 

  54. Fields HL, Emson PC, Leigh BK, Iversen LL: Multiple opiate receptor sites on primary afferent fibres. Nature 284:351–353, 1980.

    Article  PubMed  CAS  Google Scholar 

  55. Hiller JM, Simon EJ, Crain SM, Peterson ER: Opiate receptors in cultures of fetal mouse dorsal root ganglia (DRG) and spinal cord: Predominance in DRG neurites. Brain Res 145:396–400, 1978.

    Article  PubMed  CAS  Google Scholar 

  56. LaMotte C, Pert CB, Snyder SH: Opiate receptor binding in primate spinal cord: Distribution and changes after dorsal root section. Brain Res 112:407–412, 1976.

    Article  PubMed  CAS  Google Scholar 

  57. Gamse R, Holzer P, Lembeck F: Indirect evidence for presynaptic location of opiate receptors on chemosensitive primary sensory neurons. Naunyn Schmiedebergs Arch Pharmacol 308:281–285, 1979.

    Article  PubMed  CAS  Google Scholar 

  58. Mudge AW, Leeman SE, Fischbach GD: Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration. Proc Natl Acad Sci USA 76:526–530, 1979.

    Article  PubMed  CAS  Google Scholar 

  59. Carstens E, Tulloch I, Zieglgansberger W, Zimmerman M: Presynaptic excitability changes induced by morphine in single cutaneous afferent C- and A-fibers. Pfluegers Arch 379:143–147, 1979.

    Article  CAS  Google Scholar 

  60. Einspahr FJ, Piercey MF: Morphine depresses dorsal horn neuron responses to controlled noxious and non-noxious cutaneous stimulation. J Pharmacol Exp Ther 213: 456–461, 1980.

    PubMed  CAS  Google Scholar 

  61. Yaksh TL: Analgetic actions of intrathecal opiates in cat and primate. Brain Res 153:205–215, 1978.

    Article  PubMed  CAS  Google Scholar 

  62. Jurna I, Heinz G: Differential effects of morphine and opioid analgesics on A and C fibre-evoked activity in ascending axons of the rat spinal cord. Brain Res 171:573–576, 1979.

    Article  PubMed  CAS  Google Scholar 

  63. Yaksh TL: Opioid receptor systems and the endorphins: A review of their spinal organization. J Neurosurg 67:157–176, 1987.

    Article  PubMed  CAS  Google Scholar 

  64. Coombs DW, Saunders RL, Gaylor MS, Block AR, Colton T, Harbaugh R, Pageau MG, Mroz W: Relief of continuous chronic pain by intraspinal narcotics infusion via an implanted reservoir. JAMA 250:2336–2339, 1983.

    Article  PubMed  CAS  Google Scholar 

  65. Auld AW, Maki-Jokela A, Murdoch DM: Intraspinal narcotic analgesia in the treatment of chronic pain. Spine 10:777–781, 1985.

    Article  PubMed  CAS  Google Scholar 

  66. Penn RD, Paice JA: Chronic intrathecal morphine for intractable pain. J Neurosurg 67:182–186, 1987.

    Article  PubMed  CAS  Google Scholar 

  67. Seybold V, Elde R: Neurotensin immunoreactivity in the superficial laminae of the dorsal horn of the rat. I. Light microscopic studies of cell bodies and proximal dendrites. J Comp Neurol 205:89–100, 1982.

    Article  PubMed  CAS  Google Scholar 

  68. Miletic V, Randic M: Neurotensin excites cat spinal neurons located in laminae I-III. Brain Res 169:600–604, 1979.

    Article  PubMed  CAS  Google Scholar 

  69. Hunt SP, Kelly JS, Emson PC, Kimmel JR, Miller RJ, Wu J-Y: An immunohistochemical study of neuronal populations containing neuro-peptides or gamma-aminobutyrate within the superficial layers of the rat dorsal horn. Neuroscience 6:1883–1898, 1981.

    Article  PubMed  CAS  Google Scholar 

  70. Hokfelt T, Elde R, Johansson O, Luft R, Nilsson G, Arimura A: Immunohistochemical evidence for separate populations of somatostatin-containing and substance P-containing primary afferent neurons. Neuroscience 1:131–136, 1976.

    Article  PubMed  CAS  Google Scholar 

  71. Randic M, Miletic V: Depressant actions of methionine-enkephalin and somatostatin in cat dorsal horn neurons activated by noxious stimuli. Brain Res 152:196–202, 1978.

    Article  PubMed  CAS  Google Scholar 

  72. Swanson LW, McKellar S: The distribution of oxytocin- and neurophysin-stained fibers in the spinal cord of the rat and monkey. J Comp Neurol 188:87–106, 1979.

    Article  PubMed  CAS  Google Scholar 

  73. Barber RP, Vaughn JE, Saito K, McLaughlin BJ, Roberts E: GABAergic terminals in the substantia gelatinosa of the rat spinal cord. Brain Res 141:35–55, 1979.

    Article  Google Scholar 

  74. Basbaum AI, Glazer EJ, Oertel W: A light and EM analysis of immunoreactive glutamic acid decarboxylase (GAD) in the spinal and trigeminal dorsal horn of the cat. Neurosci Abst 7:528, 1981.

    Google Scholar 

  75. Wilson PR, Yaksh TL: Baclofen is antinociceptive in the spinal intrathecal space of animals. Eur J Pharmacol 51:323–330, 1978.

    Article  PubMed  CAS  Google Scholar 

  76. Carstens E, Trevino DL: Laminar origins of spinothalamic projections in the cat as determined by the retrograde transport of HRP. J Comp Neurol 182:151–166, 1978.

    Article  Google Scholar 

  77. Willis WD, Kenshalo DR Jr, Leonard RB: The cells of origin of the primate spinothalamic tract J Comp Neurol 188:543–574, 1979.

    Article  PubMed  CAS  Google Scholar 

  78. Abols IA, Basbaum AI: Afferent connections of the rostral medulla of the cat: A neural substrate for midbrain-medullary interactions in the modulation of pain. J Comp Neurol 201:285–297, 1981.

    Article  PubMed  CAS  Google Scholar 

  79. Casey KL: Somatosensory responses of bulboreticular units in awake cat: Relation to escape-producing stimuli. Science 173: 77–80, 1971.

    Article  PubMed  CAS  Google Scholar 

  80. Albe-Fessard D, Berkley RJ, Kruger L, Ralston HJ 3d, Willis WD Jr: Diencephalic mechanisms of pain sensation. Brain Res 356:217–96, 1985.

    PubMed  CAS  Google Scholar 

  81. Tasker RR: Deafferentation. In: Textbook of Pain, Wall PD, ed. Churchill-Livingstone, London, 1984, pp 119–132.

    Google Scholar 

  82. Rustioni A, Hayes NL, O’Neill S: Dorsal column nuclei and ascending spinal afferents in macaques. Brain 102:95–125, 1979.

    Article  PubMed  CAS  Google Scholar 

  83. Lu G-W, Bennett GJ, Nishikawa N, Hoffert MJ, Dubner R: Extra- and intra-cellular recordings from dorsal column postsynaptic spinomedullary neurons in the cat. Exp Neurol 82:456–77, 1983.

    Article  PubMed  CAS  Google Scholar 

  84. Basbaum A: Conduction of the effects of noxious stimulation by short fiber systems in the spinal cord of rat. Exp Neurol 40:699–716, 1973.

    Article  PubMed  CAS  Google Scholar 

  85. Guilbaud G, Gautron M, Peschanski M: Electrophysiological responses of neurons of the thalamic ventrobasal complex to cutaneous and articular stimulation in rats exhibiting inflammatory polyarthritis. CR des Sciences 292:227–230, 1981.

    CAS  Google Scholar 

  86. Kenshalo DR Jr, Isensee O: Response of primate SI cortical neurons to noxious stimuli. Neurosci Abstr 6:245, 1980.

    Google Scholar 

  87. Lende RA, Kirsh WM, Druckman R: Relief of facial pain after combined removal of precentral and post-central cortex. J Neurosurg 34:537–543, 1971.

    Article  PubMed  CAS  Google Scholar 

  88. Cassinari V, Pagni CA: Central Pain. Harvard University Press, Boston, 1969.

    Google Scholar 

  89. Melzack R, Wall PD: Pain mechanisms: A new theory. Science 150:971–979, 1965.

    Article  PubMed  CAS  Google Scholar 

  90. Reynolds DV: Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 164:444–445, 1969.

    Article  PubMed  CAS  Google Scholar 

  91. Mayer DJ, Liebeskind JC: Pain reduction by focal electrical stimulation of the brain: anatomical and behavioral analysis. Brain Res 68:73–93, 1974.

    Article  PubMed  CAS  Google Scholar 

  92. Goodman RR, Adler BA, Pasternak GW: Regional distribution of opiate receptors. In: The Opiate Receptors, Pasternak GW, ed. Humana Press, Clifton NJ, 1987.

    Google Scholar 

  93. Sjolund BJ, Ericksson MBE: The influence of naloxone and analgesia produced by peripheral conditioning stimulation. Brain Res 178:295–302, 1979.

    Article  Google Scholar 

  94. Hosobuchi Y, Adams JE, Linchitz R: Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science 197:183–186, 1977.

    Article  PubMed  CAS  Google Scholar 

  95. Richardson DE, Akil H: Pain reduction by electrical brain stimulation in man. J Neurosurg 47:178–183, 1977.

    Article  PubMed  CAS  Google Scholar 

  96. Behbehani MM, Fields HL: Evidence that an excitatory connection between the periaqueductal gray and nucleus raphe magnus mediates stimulation produced analgesia. Brain Res 170:85–93, 1979.

    Article  PubMed  CAS  Google Scholar 

  97. Abols IA, Basbaum AI: Afferent connections of the rostral medulla of the cat: A neural substrate for midbrain-medullary interactions in the modulation of pain. J Comp Neurol 201:285–297, 1981.

    Article  PubMed  CAS  Google Scholar 

  98. Basbaum AI, Fields HL: Endogenous pain control mechanisms: Review and hypothesis. Ann Neurol 4:451–462, 1978.

    Article  PubMed  CAS  Google Scholar 

  99. Basbaum AI, Fields HL: The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: Further studies of the anatomy of pain modulation. J Comp Neurol 187:513–532, 1979.

    Article  PubMed  CAS  Google Scholar 

  100. Fields HL, Basbaum AI, Clanton CH, Anderson SD: Nucleus raphe magnus inhibition of spinal cord dorsal horn neurons. Brain Res 126:441–453, 1977.

    Article  PubMed  CAS  Google Scholar 

  101. Turnbull IM, Shulman R, Woodhurst VB: Thalamic stimulation for neuropathic pain. J Neurosurg 52:486–493, 1980.

    Article  PubMed  CAS  Google Scholar 

  102. Gerhart KD, Yezierski RP, Fang ZR, Willis WD: Inhibition of primate spinothalamic tract neurons by stimulation in ventral posterior lateral (VPLc) thalamic nucleus: Possible mechanisms. J Neurophysiol 49: 406–423, 1983.

    PubMed  CAS  Google Scholar 

  103. Yaksh TL: Narcotic analgesics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques. Pain 4:299–359, 1978.

    Article  PubMed  CAS  Google Scholar 

  104. Bennett GJ, Mayer DJ: Inhibition of spinal cord interneurons by narcotic microinjection and focal electrical stimulation in the periaqueductal central gray matter. Brain Res 172:243–257, 1979.

    Article  PubMed  CAS  Google Scholar 

  105. Yeung JC, Rudy TA: Sites of antinociceptive action of systemically injected morphine: Involvement of supraspinal loci as revealed by intracerebroventricular injections of naloxone. J Pharmacol Exp Ther 215:626–632, 1980.

    PubMed  CAS  Google Scholar 

  106. Levine JD, Lane SR, Gordon NC, Fields HL: A spinal opioid synapse mediates the interaction of spinal and brain stem sites in morphine analgesia. Brain Res 236:85–91, 1982.

    Article  PubMed  CAS  Google Scholar 

  107. Dickenson AH, Oliveras JL, Besson JM: Role of the nucleus raphe magnus in opiate analgesia as studied by the microinjection technique in the rat. Brain Res 170:95–111, 1979.

    Article  PubMed  CAS  Google Scholar 

  108. Zorman G, Hentall ID, Adams JE, Fields HL: Naloxone-reversible analgesia produced by microstimulation in the rat medulla. Brain Res 219:137–148, 1981.

    Article  PubMed  CAS  Google Scholar 

  109. Hokfelt T, Terenius L, Kuypers HG, Dann O: Evidence for enkephalin immunoreactive neurons in the medulla oblongata projecting to the spinal cord. Neurosci Lett 14:55–60, 1979.

    Article  PubMed  CAS  Google Scholar 

  110. Mayer DJ, Price DD, Rafii A: Antagonism of acupuncture analgesia in man by the narcotic antagonist naloxone. Brain Res 121:368–372, 1977.

    Article  PubMed  CAS  Google Scholar 

  111. Levine JD, Gordon NC, Fields HL: The mechanism of placebo analgesia. Lancet 2:645–657, 1978.

    Google Scholar 

  112. Mayer DJ, Watkins LR: The role of endorphins in pain control systems. Modern Problems of Pharmacopsychiatry: The Role of Endorphins in Neuropsychiatry, Emrich HM, ed. pp 68–96, S Karger, Basel, 1981.

    Google Scholar 

  113. Watkins LR, Cobelli DA, Faris P, Aceto MD, Mayer DJ: Opiate vs. non-opiate footshock-induced analgesia (FSIA): The body region shocked is a critical factor. Brain Res 242:299–308, 1982.

    Article  PubMed  CAS  Google Scholar 

  114. Watkins LR, Mayer DJ: Organization of endogenous opiate and non-opiate pain control systems. Science 216:1185–1192, 1982.

    Article  PubMed  CAS  Google Scholar 

  115. Buchsbaum MS, Davis GC, Bunney WE Jr: Naloxone alters pain perception and somatosensory evoked potentials in normal subjects. Nature 270:620–622, 1977.

    Article  PubMed  CAS  Google Scholar 

  116. Chapman CR, Benedetti C: Analgesia following transcutaneous electrical stimulation and its partial reversal by a narcotic antagonist. Life Sci 21:1645–1648, 1977.

    Article  PubMed  CAS  Google Scholar 

  117. Oliveras JL, Hosobuchi Y, Bruxelle J, Passot C, Besson JM: Analgesic effects induced by electrical stimulation of the nucleus raphe magnus in the rat: Interaction with morphine analgesia. Abstr 7th Int Cong Pharmacol 1:280, 1978.

    Google Scholar 

  118. Rivot JP, Chiang CY, Besson JM: Increase of serotonin metabolism within dorsal horn of the spinal cord during nucleus raphe magnus stimulation, as revealed by in vivo electrochemical detection. Brain Res 238:117–126, 1982.

    Article  PubMed  CAS  Google Scholar 

  119. Oliveras JL, Hosobuchi Y, Guilbaud G, Besson JM: Analgesic electrical stimulation of the feline nucleus raphe magnus: Development of tolerance and its reversal by 5-HTP. Brain Res 146:404–409, 1978.

    Article  PubMed  CAS  Google Scholar 

  120. Hosobuchi Y: Tryptophan reversal of tolerance to analgesia induced by central gray stimulation. Lancet 2:47, 1978.

    Article  PubMed  CAS  Google Scholar 

  121. Headley PM, Duggan AW, Griersmith BT: Selective reduction by noradrenaline and 5-hydroxytryptamine of nociceptive responses of cat dorsal horn neurones. Brain Res 145:185–189, 1978.

    Article  PubMed  CAS  Google Scholar 

  122. Jordan LM, Kenshalo DR Jr, Martin RF, Haber LH, Willis WD: Depression of primate spinothalamic tract neurons by iontophoretic application of 5-hydroxytryptamine Pain 5:135–142, 1978.

    Article  PubMed  CAS  Google Scholar 

  123. Yaksh TL, Wilson PR: Spinal serotonin terminal system mediates antinociception J Pharmacol Exp Ther 208:446–453, 1979.

    PubMed  CAS  Google Scholar 

  124. Messing RB, Flinchbaugh C, Waymire JC: Tryptophan and 5-hydroxyindoles in different CNS regions following acute morphine. Eur J Pharmacol 48:137–140, 1978.

    Article  PubMed  CAS  Google Scholar 

  125. Vasko MR, Vogt M: Analgesia, development of tolerance, and 5-hydroxytryptamine turnover in the rat after cerebral and systemic administration of morphine. Neuroscience: 7 (5):1215–1225, 1982.

    Article  PubMed  CAS  Google Scholar 

  126. Yaksh TL, Tyce GM: Microinjection of morphine into periaqueductal gray provokes the release of serotonin from spinal cord. Brain Res 171:176–181, 1979.

    Article  PubMed  CAS  Google Scholar 

  127. Godefroy F, Weil-Fugazza J, Bineau-Thurotte M, Besson JM: The relationship between morphine analgesia and the activity of bulbo-spinal serotonergic system as studied by tolerance phenomenon. Brain Res 226: 201–210, 1981.

    Article  PubMed  CAS  Google Scholar 

  128. Yaksh TL: Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal gray. Brain Res 160:180–185, 1979.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Goodman, R.R. (1989). Neuroanatomical, Neurophysiological, and Neurochemical Basis of Pain. In: Brisman, R. (eds) Neurosurgical and Medical Management of Pain: Trigeminal Neuralgia, Chronic Pain, and Cancer Pain. Topics in Neurosurgery, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1651-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1651-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8917-3

  • Online ISBN: 978-1-4613-1651-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics