Skip to main content

Ischemia and Na+/K+ Pump Function

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 94))

Abstract

Passive sodium influx into rhythmically active heart cells occurs via a variety of parallel transmembrane pathways, such as membrane channels responsible for the upstroke of the action potential and ion exchange systems involved in the regulation of intracellular calcium and H+. During steady state, the cellular sodium load is counterbalanced by the energy-dependent sarcolemmal Na+/K+ pump, which extrudes sodium and imports potassium ions against an electrochemical gradient (figure 6–1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jennings, R.B., Hawkins, H.K., Lowe J.E., et al. 1978. Relation between high energy phosphate and lethal injury in myocardial injury in the dog. Am. J. Pathol. 92:187–214.

    PubMed  CAS  Google Scholar 

  2. Hearse, D.J., Garlick, P.B., and Humphrey, S.M. 1977. Ischemic contracture of the myocardium: mechanisms and prevention. Am. J. Cardiol. 39:986–993.

    Article  PubMed  CAS  Google Scholar 

  3. Janse, M.J., and Kléber, A.G. 1981. Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia. Circ. Res. 49:1069–1081.

    PubMed  CAS  Google Scholar 

  4. Balschi, J.A., Frazer, J.C., Fetters, J.K., et al. 1985. Shift reagent and Na-23 NMR discriminates between extra- and intracellular sodium pools in ischemic heart. Circulation 72:(Suppl. 3) 355.

    Google Scholar 

  5. Kléber, A.G. 1983. Resting membrane potential, extracellular potassium activity and intracellular sodium activity during acute global ischemia in the isolated guinea pig heart. Circ. Res. 52:442–450.

    PubMed  Google Scholar 

  6. Wilde, A. A.M., and Kléber, A.G. 1986. The combined effects of hypoxia, high K+, and acidosis on the intracellular sodium activity and resting potential in guinea pig papillary muscle. Circ. Res. 58:249–256.

    PubMed  CAS  Google Scholar 

  7. Eisner, D.A., Lederer, W.J., and Vaughan-Jones, R.D. 1981. The effects of rubidium and membrane potential on the intracellular sodium activity of sheep Purkinje fibers. J. Physiol. (Lond.) 317:189–205.

    CAS  Google Scholar 

  8. January, C.T., and Fozzard, H.A. 1984. The effects of membrane potential, extracellular potassium, and tetrodotoxin on the intracellular sodium ion activity of sheep cardiac muscle. Circ. Res. 54:652–665.

    PubMed  CAS  Google Scholar 

  9. Cohen, C.J., Fozzard, H.A., and Sheu, S.S. 1982. Increase in intracellular sodium ion activity during stimulation in mammalian cardiac muscle. Circ. Res. 50:651–662.

    PubMed  CAS  Google Scholar 

  10. Ellis, D. and Noireaud, J. 1987. Intracellular pH in sheep Purkinje fibers and ferret papillary muscles during hypoxia and recovery. J. Physiol. (Lond.) 383:125–141.

    CAS  Google Scholar 

  11. Nakaya, H., Kimura, S., and Kanno, M. 1985. Extracellular potassium activity and intracellular sodium activity under hypoxia, acidosis, and no glucose in dog hearts. Am. J. Physiol. 249:H1078–H1085.

    PubMed  CAS  Google Scholar 

  12. Guarnieri, T. 1987. Intracellular sodium-calcium dissociation in early contractile failure in hypoxic ferret papillary muscles. J. Physiol. (Lond.) 388:449–465.

    CAS  Google Scholar 

  13. Ellis, D. 1977. The effect of external cations and ouabain on the intracellular sodium activity of sheep Purkinje fibres. J. Physiol. (Lond.) 273:211–240.

    CAS  Google Scholar 

  14. Harris, A.S., Bisteni, A., Russell, R.A., et al. 1954. Excitatory factors in ventricular tachycardia resulting from myocardial ischemia. Potassium a major excitant. Science 119:200–203.

    Article  PubMed  CAS  Google Scholar 

  15. Hirche, H.J., Bös, F.L., Bissig, R. et al. 1980. Myocardial extracellular K+ and H+ increase and noradrenaline release as possible causes of early arrhythmias following acute coronary artery occlusion in pigs. J. Mol. Cell Cardiol. 12:579–593.

    Article  PubMed  CAS  Google Scholar 

  16. Hill, J.L. and Gettes, L.S. 1980. Effect of acute coronary artery occlusion on local myocardial K+ activity in swine. Circulation 61:768–778.

    PubMed  CAS  Google Scholar 

  17. Rau, E.E., Shine, K.I., and Langer, G.A. 1977. Potassium exchange and mechanical performance in anoxic mammalian myocardium. Am. J. Physiol. 232:H85–H94.

    PubMed  CAS  Google Scholar 

  18. Rau, E.E. and Langer, G.A. 1978. Dissociation of energetic state and potassium loss from anoxic myocardium. Am. J. Physiol. 235:H537–H543.

    PubMed  CAS  Google Scholar 

  19. Kline, R.P. and Morad, M. 1978. Potassium efflux in heart muscle during activity: extracellular accumulation and its implications. J. Physiol. (Lond.) 280:537–558.

    CAS  Google Scholar 

  20. Kunze, D.L. 1977. Rate-dependent changes in extracellular potassium in the rabbit atrium. Circ. Res. 41:122–127.

    PubMed  CAS  Google Scholar 

  21. Polimeni P.I. 1974. Extracellular space and ionic distribution in rat ventricle. Am. J. Physiol. 227:676–683.

    PubMed  CAS  Google Scholar 

  22. Weiss, J. and Shine, K.I. 1982. Extracellular K+ accumulation during myocardial ischemia in isolated rabbit heart. Am. J. Physiol. 242:H619-H628.

    PubMed  CAS  Google Scholar 

  23. Kléber, A.G. 1984. Extracellular potassium accumulation in acute myocardial ischemia. J. Mol. Cell Cardiol. 16:389–394.

    Article  PubMed  Google Scholar 

  24. Kléber, A.G., Riegger, C.B., Janse, M.J. 1987. Extracellular K+ and H+ shifts in early ischemia: mechanisms and relation to changes in impulse propagation. J. Mol. Cell Cardiol. 19 (Suppl V):35–44.

    Article  PubMed  Google Scholar 

  25. Cohen, LS., Kline, R.P., Pennefather, P., and Mulrine, N.K. 1987. Models of the Na-K pump in cardiac muscle predict the wrong intracellular Na+ activity. Proc. R. Soc. Lond. B231:371–382.

    Article  Google Scholar 

  26. Gadsby, D.C. 1980. Activation of electrogenic Na+/K+ exchange by extracellular K+ in canine cardiac Purkinje fibers. Proc. Natl. Acad. Sci. USA 77:4035–4039.

    Article  PubMed  CAS  Google Scholar 

  27. Garay, R.P. and Garrahan, P.J. 1975. The interaction of adenosinetriphosphate and inorganic phosphate with the sodium pump in red cells. J. Physiol. (Lond.) 249:51–67.

    CAS  Google Scholar 

  28. Bersohn, M.M., Philipson, K.D., and Fukushima, J.Y. 1982. Sodium-calcium exchange and sarcolemmal enzymes in ischemic rabbit hearts. Am. J. Physiol. 284:C288-C295.

    Google Scholar 

  29. Smith, G.L. and Allen, D.H. in press. The effetcs of metabolic blockade on intracellular calcium concentration in isolated ferret ventricular muscle. Circ. Res.

    Google Scholar 

  30. Allen, D.G. and Orchard, C.H. 1983. Intracellular calcium concentration during hypoxia and metabolic inhibition in mammalian ventricular muscle. J. Physiol. (Lond.) 339:107–122.

    CAS  Google Scholar 

  31. Steenbergen, C., Murphy, E., Levy, L., and London, R.E. 1987. Elevation in cytostolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ. Res. 60:700–707.

    PubMed  CAS  Google Scholar 

  32. Kitakaze, M., Pike, M.M., Chacko, V.P., and Marban, E. 1987. Direct measurement of cytosolic free calcium during ischemia and reperfusion in ferret hearts. Circulation 76:(Suppl. IV) 381.

    Google Scholar 

  33. Loiselle, D.S. 1985. The rate of resting heat production of rat papillary muscle. Pflügers Arch. 405:155–162.

    Article  PubMed  CAS  Google Scholar 

  34. Kléber, A.G., Riegger, C.B., and Janse, M.J. 1987. Electrical uncoupling and increase of extracellular resistance after induction of ischemia in isolated, arterially perfused rabbit papillary muscle. Circ. Res. 61:271–279.

    PubMed  Google Scholar 

  35. Fiolet, J.W.T., Baartscheer, A., Schumacher, C.A., et al. 1984. The change of free energy of ATP hydrolysis during global ischemia and anoxia in the rat heart. Its possible role in the regulation of transsarcolemmal sodium and potassium gradients. J. Mol. Cell Cardiol. 16:1023–1036.

    Article  PubMed  CAS  Google Scholar 

  36. Kammermeier, H., Schmidt, P., and Jüngling, E. 1982. Free energy change of ATP-hydrolysis: a causal factor of early hypoxic failure of the myocardium? J. Mol. Cell Cardiol. 14:267–277.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Boston/Dordrecht/London

About this chapter

Cite this chapter

Kléber, A.G., Cascio, W.E. (1989). Ischemia and Na+/K+ Pump Function. In: Rosen, M.R., Palti, Y. (eds) Lethal Arrhythmias Resulting from Myocardial Ischemia and Infarction. Developments in Cardiovascular Medicine, vol 94. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1649-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1649-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8916-6

  • Online ISBN: 978-1-4613-1649-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics