Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 94))

  • 58 Accesses

Abstract

Harris et al. [1] were the first to appreciate that occlusion of a coronary artery is followed by an increase of potassium in the extracellular space of the area deprived of its circulation. They then performed a series of experiments, which led them to conclude that the increase in extracellular potassium was a major factor, perhaps the major factor in the pathogenesis of the acute ventricular arrhythmias, including ventricular fibrillation, which accompany coronary occlusion [1, 2]. Later, it was shown that acute coronary occlusion leads to a fall in extracellular pH [3] and a rise in extracellular pCO2 [4] within the ischemic zone. Within the last decade, a variety of new techniques, including ion selective electrodes, nuclear magnetic resonance, and voltage and ion sensitive dyes, have permitted the more precise characterization of the intracellular and extracellular ionic changes that occur when the coronary circulation is abruptly or progressively interrupted and a more accurate correlation of these ionic changes to the associated metabolic, electrical, and mechanical changes. As is usually the case, each new observation has served to bring into sharp focus the limits of our understanding and has spawned a series of new questions. In this presentation, we will briefly review the characteristics, causes, and effects of the potassium and pH changes that occur when coronary flow is interrupted and some of the factors that modify these changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harris, A.S., Bisteni, A., Rüssel, R.A. et al. 1954. Excitatory factors in ventricular tachycardia resulting from myocardial ischemia: potassium a major excitant. Science 119:200.

    Article  PubMed  CAS  Google Scholar 

  2. Harris, A.S. 1966. Potassium and experimental coronary occlusion. Am. Heart J. 71:797.

    Article  PubMed  CAS  Google Scholar 

  3. Benzing, H., Gerbert, G., and Strohm, M. 1972. Extracellular acidbase changes in the dog myocardium during hypoxia and local ischemia, measured by means of glass micro-electrodes. Cardiology 56:85–88.

    Article  Google Scholar 

  4. Case, R.B., Felix, A., and Castellana, F.S. 1979. Rate of rise of myocardial pCO2 during early myocardial ischemia in the dog. Circ. Res. 45:324–330.

    PubMed  CAS  Google Scholar 

  5. Garlick P.B., Radda, G.K., and Seely, P.J. 1979. Studies of acidosis in the ischemic heart by phosphorous nuclear magnetic resonance. Biophys. J. 184:547–554.

    CAS  Google Scholar 

  6. Pieper, G.M., Todd, G.L., Wu, S. T. et al. 1980. Attenuation of myocardial acidosis by propranolol during ischaemic arrest and reperfusion: evidence with 31p nuclear magnetic resonance. Cardiovasc. Res. 14:646–653.

    Article  PubMed  CAS  Google Scholar 

  7. Lange, R., Ingwall, J., Hale, S.L., et al. 1984. Preservation of high-energy phosphates by verapamil in reperfused myocardium. Circulation 70:734–741.

    Article  PubMed  CAS  Google Scholar 

  8. Nakaya, H., Kimura, S., and Kanno, M. 1985, Intracellular k+ and na+ activities under hypoxia, acidosis, and no glucose in dog hearts. Am. J. Physiol. 249:1078–1085.

    Google Scholar 

  9. Kléber, A.G., Riegger, C.B., and Janse, M.J. 1987. Extracellular K+ and h+ shifts in early ischemia: mechanisms and relation to changes in impulse propagation. J. Mol. Cell Cardio. 19:Suppl. V 35–44.

    Article  Google Scholar 

  10. Wilde, A.A.M., and Kleber, A.G. 1986. The combined effects of hypoxia, high k+, and acidosis on the intracellular sodium activity and resting potential in guinea pig papillary muscle. Circ. Res. 58:249–256.

    PubMed  CAS  Google Scholar 

  11. Kleber, A.G. 1983. Resting membrane potential, extracellular potassium activity and intracellular sodium activity during acute global ischemia in isolated perfused guinea pig hearts. Circ. Res. 52:442–450.

    PubMed  CAS  Google Scholar 

  12. Tani, M., and Neely, J.R. 1987. Roles of h+ and na+/h+ exchange in ca++ uptake and recovery of function in ischemic rat heart. Circulation 76:Suppl. IV, iv–56.

    Google Scholar 

  13. Steenbergen, C., Murphy, E.A., Levy, L., and London, R.E. 1987. Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ. Res. 60:700–706.

    PubMed  CAS  Google Scholar 

  14. Hill, J.L., and Gettes, L.S. 1980. Effect of acute coronary artery occlusion on local myocardial extracellular k+ activity in swine. Circulation 61:768–778.

    PubMed  CAS  Google Scholar 

  15. Wiegand, V, Guggi, M, Meesmann, W. et al. 1979. Extracellular potassium activity change in the canine myocardium after acute coronary occlusion and the influence of beta-blockade. Cardiovasc. Res. 13:297–302.

    Article  PubMed  CAS  Google Scholar 

  16. Hirche, J.H., Franz, C.H.R., and Schramm, M. 1980. Myocardial extracellular K+ and H+ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. J. Mol. Cell Cardiol. 12:579–593.

    Article  PubMed  CAS  Google Scholar 

  17. Weiss, J. and Shine, K.I. 1982. Extracellular k+ accumulation during myocardial ischemia in isolated rabbit heart. Am. J. Physiol. 242:H619–H628.

    PubMed  CAS  Google Scholar 

  18. Fleet, W.F., Johnson, T.A., Graebner, C.A., and Gettes, L.S. 1985 Effect of serial brief ischemic episodes on extracellular k+, pH, and activation in the pig. Circulation 72:922–932.

    Article  PubMed  CAS  Google Scholar 

  19. Coronel, R., Fiolet, J.W.T., Wilms-Schopman, F.J.G., et al. 1988. Distribution of extracellular potassium and its relation to electrophysiologic changes during acute myocardial ischemia in the isolated perfused porcine heart. Circulation 77:1125–1138.

    Article  PubMed  CAS  Google Scholar 

  20. Reimer, K.A., and Jennings, R.B. 1979. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab. Invest. 40:633–644.

    PubMed  CAS  Google Scholar 

  21. Watanabe, I., Johnson, TA, Buchanan, J, et al. 1987. Effect of graded coronary flow reduction on ionic, electrical, and mechanical indexes of ischemic in the pig. Circulation 76:1127–1134.

    Article  PubMed  CAS  Google Scholar 

  22. Fedor, J.M., Mcintosh, D.M., Rembert, J.C., and Greenfield, J.C.Jr. 1978. Coronary and transmural myocardial blood flow responses in awake domestic pigs. Am. J. Physiol. 235:H435–H444.

    PubMed  CAS  Google Scholar 

  23. Reimer, K.A., Hill, M.L., and Jennings, R.B. 1981. Prolonged depletion of atp and of the adenine nucleotide pool due to delayed resynthesis of adenine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs. J. Mol. Cell Cardiol. 13:229–239.

    Article  PubMed  CAS  Google Scholar 

  24. Case, R.B., Nasser, M.G., and Crampton, R.L. 1969. Biochemical aspects of early myocardial ischemia. Am. J. Cardiol. 24:776–781.

    Article  Google Scholar 

  25. Hess, M.L., Krause, S., and Kontos, H.A. 1983. Mediation of sarcoplasmic reticulum disruption in the ischemic myocardium: proposed mechanism by the interaction of hydrogen ions and oxygen free radicals. Adv. Exp. Med. Biol. 161:377–389.

    PubMed  CAS  Google Scholar 

  26. Gettes, L.S. 1986. Effect of ischemia on cardiac electrophysiology. In The Heart and Cardiovascular System, H.A. Fozzard, E. Haber, R.B. Jennings, et al. eds., New York, Raven Press, 1317–1342.

    Google Scholar 

  27. Kagiyama, Y., Hill, J.L., and Gettes, L.S. 1982. Interaction of acidosis and increased extracellular potassium on action potential characteristics and conduction in guinea pig ventricular muscle. Circ. Res. 51:614–623.

    PubMed  CAS  Google Scholar 

  28. Kodama, I., Wilde, A., Janse, M.J., et al. 1984. Combined effects of hypoxia, hyperkalemia and acidosis on membrane action potential and excitability of guinea-pig ventricular muscle. J. Mol Cell Cardiol 16:247–259.

    Article  PubMed  CAS  Google Scholar 

  29. Gettes, L.S., and Reuter, H. 1974. Slow recovery from inactivation of inward currents in mammalian myocardial fibres. J. Physiol 240:703–724.

    PubMed  CAS  Google Scholar 

  30. Trautwein, W., Gottstein, U., and Dudel, J. 1954. Der aktionsstrom der myokardfaser im Sauerstoffmangel. Pflugers Arch. 260:40–60.

    Article  PubMed  CAS  Google Scholar 

  31. Carmeliet, E.E. 1984. Myocardial ischemia: reversible and irreversible changes. Circulation 70:149–151.

    Article  PubMed  CAS  Google Scholar 

  32. Gettes, L.S., and Saito, T. 1980. Effect of antiarrhythmic drugs on the slow inward current system. In The Slow Inward Current and Cardiac Arrhythmias, D.P. Zipes, J.C. Bailey, and V. Elharrar eds. The Hague, Martinus Nijhoff Publishers, 455–477.

    Google Scholar 

  33. Kléber, A.G., Janse, M.J., van Capelle, F.J.L., and Durrer, D. 1973. Mechanism and time course of s-t and t-q segment changes during acute ischemia in the pig heart determined by extracellular and intracellular recording. Circ. Res. 42:603–613.

    Google Scholar 

  34. Trautwein, W., and Kassenbaum, D.G. 1961. On the mechanism of spontaneous impulse generation in the pacemaker of the heart. J. Gen. Physiol 45:317–330.

    Article  PubMed  CAS  Google Scholar 

  35. Johnson, T.A., Coronel, R., Graebner, C.A., et al. 1987. Relationship between extracellular potassium accumulation and local tq-segment potential during acute myocardial ischemia in the porcine. J. Mol Cell Cardio. 19:949–952.

    Article  CAS  Google Scholar 

  36. Kléber, A.G., Riegger, C.B., and Janse, M.J. 1987. Electrical uncoupling and increase of extracellular resistance after induction of ischemia in isolated, arterially perfused rabbit papillary muscle. Circ. Res. 61:271–279.

    PubMed  Google Scholar 

  37. Fujino, T., Buchanan, I.W. Jr., and Gettes, L.S. 1985. Effects of verapamil on the changes in conduction time, Vmax and longitudinal resistance induced by simulated ischemia (abstr.). Circulation 72:III-, 1985.

    Google Scholar 

  38. Weiss, J., and Shine, K.I. 1982. [K+] accumulation and electrophysiological alterations during early myocardial ischemia. Am. J. Physiol 243:H318–H327.

    PubMed  Google Scholar 

  39. Weiss, J., and Shine, K.L. 1986. Effects of heart rate on extracellular [K+] accumulation during myocardial ischemia. Am. J. Physiol 250:H982–H991.

    PubMed  CAS  Google Scholar 

  40. Fleet, W.F., Johnson, T.A., Graebner, B.A., et al. 1986. Effects of verapamil on ischemia-induced changes in extracellular K+, pH, and local activation in the pig. Circulation 73:837–846.

    Article  PubMed  CAS  Google Scholar 

  41. Gettes, L.S., Symanski, J.D., Fleet, W.F., et al. 1986. The intracellular and extracellular changes associated with ischemia-effects of catecholamines in arrhythmogenesis. Eur. Heart J. (Suppl. A):77–84.

    Google Scholar 

  42. Elharrar, V., Guam, W.E., and Zipes D.P. 1977. Effect of drugs on conduction delay and incidence of ventricular arrhythmias induced by acute coronary occlusion in dogs. Am. J. Cardiol. 39:544–549.

    Article  PubMed  CAS  Google Scholar 

  43. Kaumann, A.J., and Aramendia, P. 1968. Prevention of ventricular fibrillation induced by coronary ligation. J. Pharmacol Exp. Ther. 164:326–332.

    PubMed  CAS  Google Scholar 

  44. Watanabe, I., Johnson, T.A., Engle, CL., et al. submitted for publication, 1988. Effects of verapamil and propranolol on changes in extracellular K+, pH, and local activation during graded coronary flow in the pig.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Boston/Dordrecht/London

About this chapter

Cite this chapter

Gettes, L.S., Johnson, T.A., Fleet, W.F., Watanabe, I. (1989). Ionic Changes Associated with Acute Ischemia. In: Rosen, M.R., Palti, Y. (eds) Lethal Arrhythmias Resulting from Myocardial Ischemia and Infarction. Developments in Cardiovascular Medicine, vol 94. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1649-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1649-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8916-6

  • Online ISBN: 978-1-4613-1649-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics