Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 94))

  • 56 Accesses

Abstract

At a constant heart rate, the heart is in a steady state. This means that with each beat the Na+, Ca2+, and K+, which cross the membrane during each action potential, must be returned to their original site inside or outside the cell before the next beat. An obvious corollary of this steady state is that the concentrations of each of these ions in each intracellular and extracellular compartment remains unaltered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen, C.J., Fozzard, H.A., and Sheu, S. 1982. Increase in intracellular sodium ion activity during stimulation in mammalian cardiac muscle. Circ. Res. 50:651–662.

    PubMed  CAS  Google Scholar 

  2. Boyett, M.R., Hart, G., and Levi, AJ. 1987. Factors affecting intracellular sodium during repetitive activity in isolated sheep Purkinje fibres. J. Physiol. 384:405–429.

    PubMed  CAS  Google Scholar 

  3. Sheu, S., and Fozzard, H.A. 1982. Transmembrane Na+ and Ca2+ electrochemical gradients in cardiac muscle and their relationship to force development. J. Gen. Physiol. 80:325–351.

    Article  PubMed  CAS  Google Scholar 

  4. Kline, R., Cohen, L, Falk, R., and Kupersmith, J. 1980. Activity dependent extracellular K+ fluctuations in canine Purkinje fibers. Nature 286:68–71.

    Article  PubMed  CAS  Google Scholar 

  5. Cohen, I.S., Datyner, N.B., Gintant, G.A., et al. 1987. Properties of an electrogenic Na/K pump in isolated canine Purkinje myocytes. J. Physiol. 383:251–267.

    PubMed  CAS  Google Scholar 

  6. Hauser, S., and Freeman, A. 1980. Volumetric properties of intracellular compartments in canine cardiac Purkinje cells. Am. J. Physiol. 238.H561–H568.

    Google Scholar 

  7. Attwell, D., Cohen, I., Eisner, D., et al. 1979. The sodium “window” current in cardiac Purkinje fibres. Pflugers Arch. 379:137–142.

    Article  PubMed  CAS  Google Scholar 

  8. Gintant, G.A., Datyner, N.B., and Cohen, I.S. 1984. Slow inactivation of a tetrodotoxin sensitive current in canine cardiac Purkinje fibres. Biophys. J. 45:509–512.

    Article  PubMed  CAS  Google Scholar 

  9. Carmeliet, E. 1985. Slow decay of sodium current and effect of quinidine in rabbit cardiac Purkinje fibers. In Cardiac Electrophysiology and Arrhythmias, D.L. Zipes, ed., pp. 207–215. New York, Grune & Stratton.

    Google Scholar 

  10. Cohen, I. 1979. Some difficulties in the experimental use of Vmax as a measure of gNa in cardiac membranes. Circ. Res. 45:309–312.

    PubMed  CAS  Google Scholar 

  11. Eisner, D.A., Lederer, W.J., and Vaughan-Jones, R.O. 1981. The effects of rubidium ions and membrane potential on the intracellular sodium activity of voltage-clamped sheep cardiac Purkinje fibres. J. Physiol. 317:189–205.

    PubMed  CAS  Google Scholar 

  12. Cohen, L.S., Kline, R.P., Pennefather, P., and Mulrine, N.K. 1987. Models of the Na/K pump in cardiac muscle predict the wrong intracellular Na+ activity. Proc. Roy. Soc. London (Biology) 231, 371–382.

    Article  CAS  Google Scholar 

  13. Baumgarten, C.M., and Desilets, M. in press. Isoproterenol intracellular Na+ activity, and the Na/K pump in isolated ventricular myocytes. In Recent Studies of Ion Transport and Impulse Propagation in Cardiac Muscle, W.R. Giles, ed., New York, Alan R. Liss, Inc.

    Google Scholar 

  14. Fozzard, H.A., Sejersted, O.M., and Wasserstrom, J. A. 1986. Sodium activation of the Na, K pump in isolated sheep cardiac Purkinje strands. J. Physiol. 381:91P.

    Google Scholar 

  15. Cohen, I., Falk, R., and Kline, R. 1981. Membrane currents following activity in canine cardiac Purkinje fibers. Biophys. J. 33:281–288.

    Article  PubMed  CAS  Google Scholar 

  16. Falk, R. 1983. Membrane Current Following Activity in Canine Cardiac Purkinje Fibers. Ph. D. dissertation. SUNY Stony Brook.

    Google Scholar 

  17. Falk, R.T., and Cohen, I.S. 1984. Membrane current following activity in canine cardiac Purkinje fibers. J. Gen. Physiol. 83:771–799.

    Article  PubMed  CAS  Google Scholar 

  18. Chang, F., and Cohen, I.S. in press. Na/K pump current elicited by repetitive activation of ICa (abstr.). Biophys. J.

    Google Scholar 

  19. Glitsch, H.G., Pusch, H., and Verdonck, F. 1986. The contribution of Na and K ions to the pacemaker current in sheep cardiac Purkinje fibres. Pflugers Arch. 406:464–471.

    Article  PubMed  CAS  Google Scholar 

  20. Boyett, M.R., Hart, G., and Levi, A.J. 1987. Factors affecting intracellular sodium during repetitive activity in isolated sheep Purkinje fibres. J. Physiol. 384:405–429.

    PubMed  CAS  Google Scholar 

  21. Colatsky, T.J. 1980. Voltage clamp measurements of sodium channel properties in rabbit Purkinje fibres. J. Physiol. 305:215–234.

    PubMed  CAS  Google Scholar 

  22. Eisner, D.A., Lederer, W.J., and Sheu, S.S. 1983. The role of intracellular sodium activity in the antiarrhythmic action of local anesthetics in sheep Purkinje fibres. J. Physiol. 340:239–257.

    PubMed  CAS  Google Scholar 

  23. Colatsky, T.J. 1982. Mechanisms of action of lidocaine and quinidine on action potential duration in rabbit cardiac Purkinje fibres. Circ. Res. 50:17–27.

    PubMed  CAS  Google Scholar 

  24. Carmeliet, E., and Saikawa, T. 1982. Shortening of the action potential and reduction of pacemaker activity by lidocaine, quinidine and procaineamide in sheep cardiac Purkinje fibers. Circ. Res. 50:257–272.

    PubMed  CAS  Google Scholar 

  25. Eisner, D.A., and Lederer, W.J. 1980. Characterization of the electrogenic sodium pump in cardiac Purkinje fibres. J. Physiol. 303:441–474.

    PubMed  CAS  Google Scholar 

  26. Gadsby, D.C. 1980. Activation of electrogenic Na+/K+ exchange by extracellular K+ in canine cardiac Purkinje fibres. Proc. Nat. Acad. Sci. (USA) 77:4035–4039.

    Article  CAS  Google Scholar 

  27. Verdonck, F., and Bosteels, S. 1985. The effects of membrane potential and extracellular K+ on Na+ pump activity and intracellular Na+ activity in rabbit cardiac Purkinje fibers. J. Gen. Physiol. 86:30a.

    Google Scholar 

  28. Kimura, J., Miyanae, S., and Noma, A. 1987. Identification of sodium-calcium exchange current in single ventricular cells of guinea pig. J. Physiol. 384:199–222.

    PubMed  CAS  Google Scholar 

  29. Poitreau, D., Richard, S., Nargeot, J., and Raymond, G. 1987. Tension activation and relaxation in frog atrial fibres: evidence for direct effects of divalent cations (Ca2+, Sr2+, Ba2+) on contractile proteins and Na-Ca exchange. Pflugers Arch. 410:326–334.

    Article  Google Scholar 

  30. Mullins, L.J. 1981. Ion Transport in Heart. New York, Raven Press.

    Google Scholar 

  31. DiFrancesco, D. 1981. A new interpretation of the pacemaker current in calf Purkinje fibres. J. Physiol. 314:359–376.

    PubMed  CAS  Google Scholar 

  32. DiFrancesco, D. 1981. A study of the ionic nature of the pacemaker current in calf Purkinje fibres. J. Physiol. 314:377–393.

    PubMed  CAS  Google Scholar 

  33. Dresdner, K.P., Kline, R.P., and Wit, A.L. 1987. Intracellular K+ activity, intracellular Na+ activity and maximum diastolic potential of subendocardial Purkinje cells from one-day-old infarcts. Circ. Res. 60:122–132.

    PubMed  CAS  Google Scholar 

  34. January, C.T. and Fozzard, H.A. 1984. The effects of membrane potential, extracellular potassium and tetrodotoxin on the intracellular sodium ion activity of sheep cardiac muscle. Circ. Res. 54:652–665.

    PubMed  CAS  Google Scholar 

  35. Cohen, L, Falk, R., and Kline, R. 1983. Voltage clamp studies on the canine Purkinje strand. Proc. Roy. Soc. London (Biology) 217:215–236.

    Article  CAS  Google Scholar 

  36. Gadsby, D.C. 1983. B-adrenoreceptor agonist increase in membrane K+ conductance in cardiac Purkinje fibres. Nature 306:691–693.

    Article  PubMed  CAS  Google Scholar 

  37. Hauswirth, O., Noble, D., and Tsien, R.W. 1972. The dependence of plateau currents in cardiac Purkinje fibres on the interval between action potentials. J. Physiol. 222:27–49.

    Google Scholar 

  38. Cohen, I.S., Datyner, N.B., Gintant, G.A., and Kline, R.P. 1986. Time dependent outward currents in the heart. In The Heart and Cardiovascular System, H.A. Fozzard, eds., New York, Raven Press.

    Google Scholar 

  39. Cohen, I., and Kline, R. 1982. K+ fluctuations in the extracellular spaces of cardiac muscle; evidence from the voltage clamp and extracellular K+ selective microelectrodes. Girc. Res. 50:1–16.

    CAS  Google Scholar 

  40. Gadsby, D.C., and Cranefield, P. 1982. Effects of electrogenic sodium extrusion on the membrane potential of cardiac Purkinje fibers. In Normal and Abnormal Conduction in the Heart, P. de Carvalho, B. Hoffman, and M. Lieberman, eds., New York, Futura Publishers.

    Google Scholar 

  41. Gintant, G.A., Datyner, N., and Cohen, I. 1985. Gating of delayed outward rectifiers in acutely dissociated canine cardiac Purkinje myocytes: evidence for a single channel mechanism. Biophys. J. 48:1059–1064.

    Article  PubMed  CAS  Google Scholar 

  42. Bennett, P., McKinney, L., Kass, R., and Begenesich, T. 1985. Delayed rectification in the calf cardiac Purkinje fiber: evidence for multiple state kinetic. Biophys. J. 48:553–568.

    Article  PubMed  CAS  Google Scholar 

  43. Kline, R.P., and Kupersmith, J. 1982. Effects of potassium accumulation and sodium pump activation on automatic canine Purkinje fibres. J. Physiol. 324:507–533.

    PubMed  CAS  Google Scholar 

  44. Attwell, D., Eisner, D., and Cohen, I. 1979. Voltage clamp and tracer flux data: effects of a restricted extracellular space. Q. Rev. Biophys. 12:213–261.

    Article  PubMed  CAS  Google Scholar 

  45. Gaskell, W.H. 1884. On the innervation of the heart with especial reference to the heart of the tortoise. J. Physiol. 4:43–127.

    Google Scholar 

  46. Vassalle, M. 1970. Electrogenic suppression of automacity in sheep and dog Purkinje fibers. Circ. Res. 27:361–377.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Boston/Dordrecht/London

About this chapter

Cite this chapter

Cohen, I.S., Chang, F., Kline, R.P. (1989). Repetitive Activity: Origin of the Na+ Load and its Physiologic Effects. In: Rosen, M.R., Palti, Y. (eds) Lethal Arrhythmias Resulting from Myocardial Ischemia and Infarction. Developments in Cardiovascular Medicine, vol 94. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1649-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1649-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8916-6

  • Online ISBN: 978-1-4613-1649-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics