Skip to main content

Role of Cytosolic Calcium in the Normal and Ischemic Heart: Potential New Insights from the Second Generation Indicator, Indo-1

  • Chapter
Lethal Arrhythmias Resulting from Myocardial Ischemia and Infarction

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 94))

Abstract

A pivotal issue in the understanding of myocardial ischemia is the role played by cytosolic calcium ions. In addition to their well-known role in excitation-contraction coupling, calcium ions regulate several different ionic currents that flow across the cell membrane. Inability of the ischemic myocardium to sequester or extrude calcium could have a variety of effects, the most serious of which would be the subversion of electrical activity in the nonischemic portion of the heart through the genesis of ventricular arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gardos, G. 1958. The function of calcium in the potassium permeability of human erythrocytes. Biochim. Biophys. Acta. 30: 653–654.

    Article  PubMed  CAS  Google Scholar 

  2. Clusin, W.T., and Bennett, M.V.L. 1977. Calcium-activated conductance in skate electroreceptors—current clamp experiments. J. Gen. Physiol. 69:121–182.

    Article  PubMed  CAS  Google Scholar 

  3. Cohen, I., and Kline, R. 1982. K+ fluctuations in the extracellular spaces of cardiac muscle: evidence from the voltage clamp and extracellular K+ selective microelectrodes. Circ. Res. 50:1–16.

    PubMed  CAS  Google Scholar 

  4. Allen, D.G., and Orchard, C.H. 1987. Myocardial contractile function during ischemia and hypoxia. Circ. Res. 60:153–168.

    PubMed  CAS  Google Scholar 

  5. Allen, D.G., Lee, J.A., and Smith, G.L. The effects of simulated ischaemia on intracellular calcium and tension in isolated ferret ventricular muscle. J. Physiol. 401:81P.

    Google Scholar 

  6. Blake, K. Smith, N.A., and Clusin, W.T. 1986. Rate dependence of ischaemic myocardial depolarisation: evidence for a novel membrane current. Cardiovasc. Res. 20:557–562.

    Article  PubMed  CAS  Google Scholar 

  7. Lea, T.J., and Ashley, C.C. 1978. Increase in free Ca++ in muscle after exposure to CO2. Nature 275:236–238.

    Article  PubMed  CAS  Google Scholar 

  8. Allen, D.G., Lee, J.A., and Smith, G.L. Changes in calcium transients during repeated exposures to anoxia in isolated ferret ventricular muscle. J. Physiol. 400:21P.

    Google Scholar 

  9. Lee, H., Smith, N., Mohabir, R., and Clusin, W.T. 1987. Cytosolic calcium transients from the bearing mammalian heart. Proc. Natl. Acad. Sci. USA 84:7793–7797.

    Article  PubMed  CAS  Google Scholar 

  10. Cobbold, P.H., and Bourne, P.K. 1984. Aequorin measurements of free calcium in single heart cells. Nature 312:444–446.

    Article  PubMed  CAS  Google Scholar 

  11. Allen, D.G., and Orchard, C.H. 1983. The effect of hypoxia and metabolic inhibition on intracellular calcium in mammalian heart muscle. J. Physiol. 339:102–122.

    Google Scholar 

  12. Barry, W.H., Peeters, G.A., Rasmussen, C.A.F., and Cunningham, M.J: 1987. Role of changes in [Ca++]i in energy deprivation contracture. Circ. Res. 61:726–734.

    PubMed  CAS  Google Scholar 

  13. Steenbergen, G., Murphy, E., Levy, L., and London, R.E. 1987. Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ. Res. 60:700–707.

    PubMed  CAS  Google Scholar 

  14. Marban, E., Kitakaze, M., Kusuoka, H., et al. 1987. Intracellular free calcium concentration measured with 19F NMR spectroscopy in intact ferret hearts. Proc. Natl. Acad. Sci. USA 84:6005–6009.

    Article  PubMed  CAS  Google Scholar 

  15. Pike, M.M., Kitakaze, M., Chacko, V.P., and Marban, E. 1988. Ca2+ transients in intact perfused hearts observed by 19F NMR spectroscopy. Biophys. J. 53:649a.

    Google Scholar 

  16. Ashley, C.C., Potter, J.D., Strang, P., et al. 1985. Kinetic investigations in single muscle fibres using luminescent fluorescent Ca++ probes. Cell Calcium 6:159–181.

    Article  PubMed  CAS  Google Scholar 

  17. Grynkiewicz, G., Poenie, M., and Tsien, R.Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450.

    PubMed  CAS  Google Scholar 

  18. Steinberg, S.F., Bilezikian, J.P., and Al-Awqati, Q. 1987. Fura-2 fluorescence is localized to mitochondria in endothelial cells. Am. J. Physiol. 253:C744–747.

    PubMed  CAS  Google Scholar 

  19. Luckhoff, A. 1986. Measuring cytosolic free calcium concentration in endothelial cells with indo-1: the pitfall of using the ratio of two fluorescence intensities recorded at different wavelengths. Cell Calcium 7:233–248.

    Article  PubMed  CAS  Google Scholar 

  20. Peeters, G.A., Hlady, V., Bridge, J.H.B., and Barry, W.H. 1987. Simultaneous measurement of calcium transients and motion in cultured heart cells. Am. J. Physiol. 253:H1400–1408.

    PubMed  CAS  Google Scholar 

  21. Lee, H., and Clusin, W.T. 1987. Cytosolic calcium staircase in cultured myocardial cells. Circ. Res. 61:934–939.

    PubMed  CAS  Google Scholar 

  22. Cannell, M.B., Berlin, J.R., and Lederer, W.J. 1987. Effect of membrane potential changes on the calcium transient in single rat cardiac muscle cells. Science 238:1419–1423.

    Article  PubMed  CAS  Google Scholar 

  23. Barcenas-Ruiz, L., and Wier, W.G. 1987. Voltage dependence of intracellular [Ca++]i transients in guinea-pig ventricular myocytes. Circ. Res. 61:148–154.

    PubMed  CAS  Google Scholar 

  24. Allen, D.G., Eisner, D.A., Lab, M.J., and Orchard, C.H. 1983. The effects of low sodium solutions on intracellular calcium concentration and tension in ferret ventricular muscle. J. Physiol. 345:491–407.

    Google Scholar 

  25. Jackson, A.P., Timmerman, M.P., Bagshaw, C.R., and Ashley, C.C. 1987. The kinetics of calcium binding to fura-2 and indo-1. FEBS Lett. 215:31–35.

    Article  Google Scholar 

  26. Endoh, M., Yanagisawa, T., Taira, N., and Blinks, J.R. 1986. Effects of new inotropic agents on cyclic nucleotide metabolism and calcium transients in canine ventricular muscle. Circulation 73 III:117–113.

    Google Scholar 

  27. Lee, H., and Clusin, W.T. 1987. Factors governing the duration of cytosolic calcium transients and contraction in embryonic myocardial cell aggregates. Circulation 76:IV–471.

    Google Scholar 

  28. Lee, H., Mohabir, R., Smith, N., Franz, M.R., and Clusin, W.T. 1988. Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing indo-1: Correlation with monophasic action potentials and contraction. Circulation. In press.

    Google Scholar 

  29. Katz, A.M. 1983. Cyclic adenosine monophosphate effects on the myocardium: a man who blows hot and cold with one breath. J. Am. Coll. Cardiol. 2:143–149.

    Article  PubMed  CAS  Google Scholar 

  30. Clusin, W.T. 1983. Caffeine induces a transient inward current in cultured cardiac cells. Nature 301:248–250.

    Article  PubMed  CAS  Google Scholar 

  31. Clusin, W.T. 1985. Do caffeine and metabolic inhibitors increase free calcium in the heart? Interpretation of conflicting intracellular calcium measurements. J. Mol. Cell. Cardiol. 17:213–220.

    Article  PubMed  CAS  Google Scholar 

  32. Wendt, I.R., and Stephenson, D.GJ. 1983. Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat. Pflugers Arch. 398:210–216.

    Article  PubMed  CAS  Google Scholar 

  33. Case, R.B., Felix, A., and Castellana, F.S. 1979. Rate of rise of myocardial pCO2 during early myocardial ischemia in the dog. Circ. Res. 45:324–330.

    PubMed  CAS  Google Scholar 

  34. Couper, G.S., Weiss, J., Hiltbrand, B., and Shine, K.I. 1984. Extracellular pH and tension during ischemia in the isolated rabbit ventricle. Am. J. Physiol. 247:H916-H927.

    PubMed  CAS  Google Scholar 

  35. Orchard, C.H., Houser, S.R., Kort, A.A., et al. 1987. Acidosis facilitates spontaneous sarcoplasmic reticulum Ca++ release in rat myocardium. J. Gen. Physiol. 90:145–165.

    Article  PubMed  CAS  Google Scholar 

  36. Bers, D.M., and Ellis, D. 1982. Intracellular calcium and sodium activity in sheep heart Purkinje fibers. Effect of changes in external sodium and intracellular pH. Pfluger’s Arch. 393:171–178.

    Article  CAS  Google Scholar 

  37. Orchard, C.H. 1987. The role of the sarcoplasmic reticulum in the response of ferret and rat heart muscle to acidosis. J. Physiol. 384:431–449.

    PubMed  CAS  Google Scholar 

  38. Vial, C, Owen, P., Opie, L.H., and Posel, D. 1987. Significance of release of adenosine triphosphate and adenosine induced by hypoxia or adrenaline in perfused rat heart. J. Mol. Cell. Cardiol. 19:187–197.

    Article  PubMed  CAS  Google Scholar 

  39. Sharma, V.K., and Sheu, S.S. 1986. Micromolar extracellular ATP increases intracellular calcium concentration in isolated rat ventricular myocytes. Biophys. J. 49:351a.

    Google Scholar 

  40. De Young, M.B., and Scarpa, A. 1987. Extracellular ATP induces Ca2+ transients in cardiac myocytes which are potentiated by norepinephrine. FEBS Lett. 223:53–58.

    Article  Google Scholar 

  41. Benham, C.D., and Tsien, R.W. 1987. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature 328:275–278.

    Article  PubMed  CAS  Google Scholar 

  42. Charest, R., Blackmore, P.F., and Exton, J.H. 1985. Characterization of responses of isolated rat hepatocytes to ATP and ADP. J. Biol. Chem. 260:15789–15794.

    PubMed  CAS  Google Scholar 

  43. Dubyak, G.R., and De Young, M.B. 1985. Intracellular calcium mobilization activated by extracellular ATP in Ehrlich tumor cells. J. Biol. Chem. 260:10653–10661.

    PubMed  CAS  Google Scholar 

  44. Clusin, W.T., Bristow, M.R., Bairn, D.S., et al. 1982. The effects of diltiazem and reduced serum ionized calcium on ischemic ventricular fibrillation in the dog. Circ Res. 50:518–526.

    PubMed  CAS  Google Scholar 

  45. Clusin, W.T., Buchbinder, M., Ellis, A.K., et al. 1984. Réduction of ischemic depolarization by the calcium channel blocker diltiazem—correlation with improvement of ventricular conduction and early arrhythmias in the dog. Circ. Res. 54:10–20.

    PubMed  CAS  Google Scholar 

  46. Blake, K., and Clusin, W.T. 1986. Effect of diltiazem on ischemic myocardial depolarization and extracellular K+ accumulation. Eur. J. Pharmacol. 127:261–265.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Boston/Dordrecht/London

About this chapter

Cite this chapter

Clusin, W.T., Mohabir, R., Lee, HC. (1989). Role of Cytosolic Calcium in the Normal and Ischemic Heart: Potential New Insights from the Second Generation Indicator, Indo-1. In: Rosen, M.R., Palti, Y. (eds) Lethal Arrhythmias Resulting from Myocardial Ischemia and Infarction. Developments in Cardiovascular Medicine, vol 94. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1649-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1649-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8916-6

  • Online ISBN: 978-1-4613-1649-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics