Skip to main content

Molecular Biology of Insect Iridescent Virus Type 6

  • Chapter
Molecular Biology of Iridoviruses

Part of the book series: Developments in Molecular Virology ((DMVI,volume 10))

Abstract

The genome of the insect iridescent virus type 6-Chilo iridescent virus (CIV)— contains a double-stranded linear DNA molecule of 209 kbp which is circularly permuted and terminally redundant. A defined and complete gene library of the viral genome was established which represents 100% of the CIV DNA sequences. The physical maps of the viral genome were constructed for the restriction enzymes ApaI, Asp718, BamHI, EcoRI, NcoI, PvuII, SalI, SphI, and SmaI. Although the CIV genome is linear the restriction maps of the viral genome are circular due to circular permutation of the CIV DNA molecule. The CIV genome contains repetitive DNA sequences located in the EcoRI DNA fragments H and PvuII CIV DNA fragment L (5064 bp) at the coordinates 0.535 to 0.548 and 0.920 to 0.944, respectively. A DNA element (91 bp) at the nucleotide position 1981 to 2072 of the EcoRI CIV DNA fragment H had been found to be complementary (>90%) to nine regions of the PvuII DNA fragment L. A stem-loop structure has been identified by heteroduplex mapping at the genome coordinates 0.571 to 0.582 (HindIII/EcoRI subfragment (2555 bp) of the EcoRI CIV DNA fragment H). The DNA nucleotide sequence of the PvuII DNA fragment L contains many perfect direct repeats of sizes up to 145 bp. In addition to these repetitions a cluster of four imperfect repetitive DNA elements (R1 to R4) with a complex structural arrangement was detected. R1, R2 and R3 exist in duplicate (two boxes (B)) between nucleotide positions 271 to 3466). The R4 repetitive element was found in 12 boxes (between bases 1301 and 4417). Five open reading frames (ORFs of 118 to 333 amino acid (AA) residues) were detected. The analysis of the amino acid sequences of the largest ORF revealed that the deduced amino acid sequence of the putative gene product contains two repetitions. Sequences of 43 amino acid residues of ORF 5 (160 to 202 AA) were found to be homologous within the majority of ORFs. A consensus sequence-MANL (X)6 IGSSST(X)6 L(X)1 LGS(X)1 LQISG(X)2 L(X)1 VN- was found in all five ORFs. The origins of DNA replication of the CIV genome were identified within the DNA sequences of the EcoRI DNA fragments C (13.5 kbp, 0.909 to 0.974 map units (m.u.)), H (9.8 kbp, 0.535 to 0.582 m.u.), M (7.3 kbp, 0.310 to 0.345 m.u.), 0 (6.6 kbp, 0.196 to 0.228 m.u.), Q (5.9 kbp, 0.603 to 0.631 m.u.), and Y (2.0 kbp, 0.381 to 0.391 m.u.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tinsley, T.W., and D.C. Kelly. J. Invert. Pathol. 16: 470–472, 1970.

    Article  CAS  Google Scholar 

  2. Fukaya, M., and S. Nasu. Appl. Entomol. Zool. 1: 69–72, 1966.

    Google Scholar 

  3. Smith, K. M. (ed.) In: Virus-insect relationships, Longman, London. 1976, pp. 102–104.

    Google Scholar 

  4. Jensen, D.D., T. Hukutsara, and Y. Tanada. J. Invert. Pathol. 19: 276–278, 1972.

    Article  Google Scholar 

  5. Kelly, D.C., M.D. Ayres, T. Lescott, J.S. Robertson, and G.M. Happ. J. Gen. Virol. 42: 95–105, 1979.

    Article  Google Scholar 

  6. Carey, G.P., T. Lescott, J.S. Robertson, L.K. Spencer, and D.C. Kelly. Virology 85: 307–309, 1987.

    Article  Google Scholar 

  7. Bellet, A.J.D., and R.B. Inman. J. Mol. Biol. 25: 425–432, 1967.

    Article  Google Scholar 

  8. Goorha R. and Murti, K.G. Proc. Nat. Acad. Sci. USA 79: 152–248, 1982.

    Article  Google Scholar 

  9. Darai, G., Anders, K., Koch, H.G., Delius, H., Gelderblom, H., Samalecos, C. and Flügel, R.M. Virology 126: 466–479, 1983.

    Article  PubMed  CAS  Google Scholar 

  10. Darai, G., Delius, H., Clarke, H., Apfel, H., Schnitzler, P. and Flügel, R.M. Virology 146: 292–301, 1985.

    Article  PubMed  CAS  Google Scholar 

  11. Willis, D.B. In: Molecular Biology of Iridoviruses (ed. G. Darai), Developments in Molecular Virology, Kluwer Academic Publishers, Boston, 1989, pp. 1–12.

    Google Scholar 

  12. Delius H., Darai, G. and Flügel, R.M. J. Virol. 49: 609–614, 1984.

    PubMed  CAS  Google Scholar 

  13. Schnitzler, P., Soltau, J.B., Fischer, M., Reisner, H., Scholz, J., Delius, H., and Darai, G. Virology 160: 66–74, 1987.

    Article  PubMed  CAS  Google Scholar 

  14. Soltau, J.B., Fischer M., Schnitzler, P., Scholz, J., and Darai, G. J. Gen. Virol. 68: 2717–2722, 1987.

    Article  CAS  Google Scholar 

  15. Fischer, M., Schnitzler, P., Delius, H., and Darai, G. Virology 167: 485–496, 1988.

    PubMed  CAS  Google Scholar 

  16. Fischer, M., Schnitzler, P., Scholz, J., Rösen-Wolff, A., Delius, H., and Darai, G. Virology 167: 497–506, 1988.

    CAS  Google Scholar 

  17. Lonsdale, D. Lancet 8121(1), 849–851 (1979).

    Article  Google Scholar 

  18. Lee, M. H., and Willis, D. B. Virology 126: 317–327, 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Sohi, S. S. Can. J. Zool. 46: 11–13, 1980.

    Article  Google Scholar 

  20. Ward, V.K. and Kalmakoff, J. Virology 160: 507–510, 1987.

    Article  PubMed  CAS  Google Scholar 

  21. Tajbakhsh S., Dove, M.J., Lee, P.E., and Seligy, V.L. Biochem. Cell Biol. 64: 495–503, 1986.

    Article  CAS  Google Scholar 

  22. Tajbakhsh S. and Seligy, V.L. In: Molecular Biology of Iridoviruses (ed. G. Darai), Developments in Molecular Virology, Kluwer Academic Publishers, Boston, 1989, 98–132.

    Google Scholar 

  23. Pickup, D.J., Bastia, D., Stone, H.O., and Joklik, W. K. Proc. Natl. Acad. Sci. USA 79: 7112–7116, 1982.

    Article  PubMed  CAS  Google Scholar 

  24. Wadsworth, S., Jacob, R.J., and Roizman, B. J. Virol. 15: 1487–1497, 1975.

    PubMed  CAS  Google Scholar 

  25. Wittek, R. and Moss, B. Cell 21: 277–284, 1980.

    Article  PubMed  CAS  Google Scholar 

  26. Willis, D.B. and Granoff, A. Virology 73: 443–453, 1976.

    Article  Google Scholar 

  27. Willis, D., Foglesong, D., and Granoff, A. J. Virol. 53: 905–912, 1984.

    Google Scholar 

  28. Beckman, B., Tham, T.N., Aubertin, A.M., and Willis, D.B. J. Virol. 62: 1271–1277, 1988.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fischer, M., Schnitzler, P., Delius, H., Rösen-Wolff, A., Darai, G. (1990). Molecular Biology of Insect Iridescent Virus Type 6. In: Darai, G. (eds) Molecular Biology of Iridoviruses. Developments in Molecular Virology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1615-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1615-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8893-0

  • Online ISBN: 978-1-4613-1615-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics