Skip to main content

Hormones and triacylglycerol metabolism under normoxic and ischemic conditions

  • Chapter
Lipid Metabolism in Normoxic and Ischemic Heart

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 5))

Summary

Fatty acids, the preferred substrate in normoxic myocardium, are derived from either exogenous or endogenous triacylglycerols. The supply of exogenous fatty acids is dependent of the rate of lipolysis in adipose tissue and of the lipoprotein lipase activity at the coronary vascular endothelium. A large part of the liberated fatty acids is reesterified with glycerol-3-phosphate and converted to triacylglycerols. Endogenous lipolysis and lipogenesis are intracellular compartmentalized multienzyme processes of which individual hormone-sensitive steps have been demonstrated in adipose tissue. The triacylglycerol lipase is the rate-limiting enzyme of lipolysis and glycerol-3-phosphate acyltransferase and possibly phosphatidate phospho-hydrolase are the rate-limiting enzymes of lipogenesis. The hormonal regulation of both processes in heart is still a matter of dispute. Triacylglycerol lipase activity in myocardial tissue has two intracellular sources: 1. the endoplasmic reticular and soluble neutral lipase, and 2. the lysosomal acid lipase. Studies in our laboratory have indicated that whereas lipolysis is enhanced during global ischemia and anoxia, overall lipolytic enzyme activities in heart homogenates were not altered. In addition we were unable to demonstrate alterations in tissue triacylglycerol content and glycerol-3-phosphate acyltransferase activity under these conditions. Lipolysis, is subject to feedback inhibition by product fatty acids. Therefore all processes leading to an increased removal of fatty acids from the catalytic site of the lipase will stimulate lipolysis. These studies will be reviewed. In addition, studies from our department have demonstrated the capacity of myocardial lysosomes to take up and degrade added triacylglycerol-particles in vitro. Such a process, stimulated by Ca2+ and stimulated by acidosis, offers another physiological target for hormone actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olson RE, Hoeschen RJ: Utilization of endogenous lipids by the isolated perfused rat heart. Biochem J 103: 796–801, 1967

    PubMed  CAS  Google Scholar 

  2. Neely JR, Rovetto MJ, Oram JF: Myocardial utilization of carbohydrate and lipids. Prog Cardiovasc Dis 15: 289–329, 1972

    Article  PubMed  CAS  Google Scholar 

  3. Robinsin DS: The function of the plasma triglycerides in fatty acid transport. Comp. Biochem. Physiol 18: 51–116, 1970

    Google Scholar 

  4. Stein O, Stein Y: Lipid synthesis, intracellular transport and storage. J Cell Biol 36: 63–67, 1968

    Article  CAS  Google Scholar 

  5. Katz AM, Nash-Adler P, Miceli J, Messineo F, Louis CF: Inhibition of Ca-efflux from the sarcoplasmatic reticulum by free fatty acids. Circulation 59: 11–12, 1979

    Google Scholar 

  6. Lamers JMJ, Hülsmann WC: Inhibition of (Na++K+)-stimulated ATPase of heart by fatty acids. J Mol Cell Cardiol 9: 343–346, 1977

    Article  PubMed  CAS  Google Scholar 

  7. Corr PB, Cross RW, Sobel BE: Arrhytmogenic amphiphil-ic lipids and the myocardial cell membrane. J Mol Cell Cardiol 14: 619–626, 1988

    Article  Google Scholar 

  8. Vaughan M, Steinberg D: Effect of hormones on lipolysis and esterification of free fatty acids during incubation of adipose tissue in vitro. J Lip Res 4: 193–199, 1963

    CAS  Google Scholar 

  9. Butcher RW, Baird CE, Sutherland EW: Effects of lipolytic and antilipolytic substances on adenosine 3″,5″mono-phosphate levels in isolated fat cells. J Biol Chem 243: 1705–1712, 1968

    PubMed  CAS  Google Scholar 

  10. Steinberg D: Interconvertible enzymes in adipose tissue regulated by cyclic AMP dependent protein kinase. Adv Cyclic Nucleotide Res 7: 157–198, 1976

    PubMed  CAS  Google Scholar 

  11. Belfrage P, Fredrikson G, Strålfors P, Tornqvist H: Adipose tissue lipases. In: Borgström В, Brockman H, (eds), Lipases,- Elsevier/North Holland, Amsterdam 1984, p 365

    Google Scholar 

  12. Stam H, Hülsmann WC: Effects of hormones, amino acids and specific inhibitors on rat heart heparin-releasable lipoprotein lipase activities in the isolated rat heart. Biochim Biophys Acta 794: 72–82, 1982

    Google Scholar 

  13. Jansen H, Stam H, Kalkman С, Hülsmann WC: On the dual localization of lipoprotein lipase in rat heart. Studies with a modified perfusion technique. Biochem. Biophys. Res. Comm. 92: 411–416, 1980

    Article  PubMed  CAS  Google Scholar 

  14. Severson DL, Lefèbre FAT, Sloan SK: Characterization of triglyceride lipase activities in rat heart. J Mol Cell Cardiol 11: 569–583, 1979

    Article  PubMed  CAS  Google Scholar 

  15. Stam H, Hülsmann WC: Comparison of heparin-releasable and neutral lipase activity of rat heart. Biochem Int 7: 187–195, 1983

    PubMed  CAS  Google Scholar 

  16. Palmer WK, Caruso RA, Oscai LB: Possible role of lipoprotein lipase in the regulation of endogenous triacylgly-cerols in the rat heart. Biochem J 198: 159–166, 1981

    PubMed  CAS  Google Scholar 

  17. Stam H, Broekhoven-Schokker S, Hülsmann WC: Studies on the involvement of lipolytic enzymes in endogenous lipolysis of the isolated rat heart. Biochim Biophys Acta 875: 87–96, 1986

    PubMed  CAS  Google Scholar 

  18. Simpson J: Rapid effects of isoprenaline, glucagon, pacing and potassium arrest on post-heparin lipoprotein lipase activity in the perfused rat heart. Biochem J 182: 253–255, 1979

    PubMed  CAS  Google Scholar 

  19. Cryer A: Tissue lipoprotein lipase activity and its action in lipoprotein metabolism. Int J Biochem 13: 525–542, 1981

    Article  PubMed  CAS  Google Scholar 

  20. Stam H, Schoonderwoerd K, Breeman WAP, Hülsmann WC: Effect of hormones, fasting and diabetes on triglyceride lipase activities in rat heart and liver. Horm Metab Res 16: 293–297, 1984

    Article  PubMed  CAS  Google Scholar 

  21. Van der Vusse GJ, Roemen THM, Prinzen FW, Coumans WA, Reneman RS: Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ Res 50: 538–546, 1982

    PubMed  Google Scholar 

  22. Spector AA: Metabolism of free fatty acids. Progr Biochem Pharmacol 6: 130–176, 1971

    CAS  Google Scholar 

  23. Stremmel W, Strohmeyer G, Borchard F, Kochwa S, Berk PD: Isolation and partial characterization of a fatty acid binding protein in rat liver membranes. Proc Natl Acad Sci USA 82: 4–8, 1985

    Article  PubMed  CAS  Google Scholar 

  24. Kennedy EP: Biosynthesis of complex lipids. Fed Proc 20: 934–940, 1961

    PubMed  CAS  Google Scholar 

  25. Bell RM, Coleman RA: Enzymes of triacylglycerol formation in mammals. In: Boyer PD (ed) The Enzymes. Academic Press Inc., Vol. XVI, 1983, pp 87–111

    Google Scholar 

  26. Brindley DN: Intracellular translocation of phosphatidate phosphohydrolase and its possible role in the control of glycerolipid synthesis. Progr Lipid Res 23: 115–133, 1984

    Article  CAS  Google Scholar 

  27. Murthy VK, Shipp JC: Accumulation of myocardial triglycerides in ketotie diabetes. Diabetes 26: 222–229, 1977

    Article  PubMed  CAS  Google Scholar 

  28. Miki Y, Hosaka K, Yamashita S, Handa H, Numa S: Acy-lacceptor specificities of 1-acylglycerol phosphate acyltrans-ferase and 1-acyl glycerolphosphorylcholine acyltransferase resolved from rat liver microsomes. Eur J Biochem 82: 433–441, 1979

    Google Scholar 

  29. Haagsman HP, Van Golde LMG: Synthesis and secretion of very low density lipoproteins by isolated rat hepatocytes in suspension: Role of diacylglycerol acyltransferase. Arch Biophys Biochem 208: 395–402, 1981

    Article  CAS  Google Scholar 

  30. Rovetto MJ, Lamberton WF, Neely JR: Mechanism of glycolytic inhibition in ischemic rat hearts. Circ Res 37: 742–752, 1975

    PubMed  CAS  Google Scholar 

  31. Crass III MF: Regulation of triglyceride metabolism in the isotopically prelabeled perfused heart. Fed Proc 36: 1995–1999, 1977

    PubMed  CAS  Google Scholar 

  32. Christiansen K: Membrane-bounded lipid particles from beef heart acyl glycerol synthesis. Biochim Biophys Acta 38: 390–402, 1975

    Google Scholar 

  33. Stam H, Schoonderwoerd K, Hülsmann WC: Synthesis, storage and degradation of myocardial triglycerides. Basic Res Cardiol 82 Suppl 1: 19–28, 1987

    Google Scholar 

  34. Wang TW, Menahan LA, Lech JJ: Subcellular localization of enzymes, lipase and triglycerides in rat heart. J Mol Cell Cardiol 9: 25–38, 1977

    Article  PubMed  CAS  Google Scholar 

  35. Hülsmann WC, Stam H: In: Hessel LW, Krans HMJ (eds) Lipoprotein Metabolism and Endocrine Regulation. Elsevier Biomed Press,- Amsterdam, 1979, pp 289–297

    Google Scholar 

  36. Stam H, Geelhoed-Mieras MM, Hülsmann WC, Erucic acid-induced alteration of cardiac triglyceride hydrolysis. Lipids 15: 242–250, 1980

    Article  PubMed  CAS  Google Scholar 

  37. Stam H, Breeman WAP, Hülsmann WC, Neutral lipase of rat heart: an inducible enzyme? Biochem Biophys Res Comm 104: 333–339, 1982

    Article  PubMed  CAS  Google Scholar 

  38. Schoonderwoerd K, Broekhoven-Schokker S, HuTsmann WC, Stam H: Involvement of lysosome-like particles in the metabolism of endogenous triglycerides in the normoxic and ischemic rat heart. Uptake and degradation of triglycerides by lysosomes isolated from rat heart. Basic Res Cardiol (in press)

    Google Scholar 

  39. Stam H, Broekhoven-Schokker S, Hülsmann WC: Characterization of mono-, di- and triacylglycerol lipase activities in the isolated rat heart. Biochim Biophys Acta 875: 76–86, 1985

    Google Scholar 

  40. Hülsmann WC, Stam H: Intracellular origin of hormone sensitive lipolysis in the rat. Biochem Biophys Res Commun 82: 53–59, 1978

    Article  PubMed  Google Scholar 

  41. Hülsmann WC, Stam H, Breeman WAP: Acid and neutral lipases involved in endogenous lipolysis in small intestine and heart. Biochem Biophys Res Commun 162: 440–448, 1981

    Article  Google Scholar 

  42. Miller WC, Oscai LB: Relationship between type L hormone sensitive lipase and endogenous triacylglycerol in rat heart. Am J Physiol 247: R621–R625, 1984

    PubMed  CAS  Google Scholar 

  43. Goldberg DI, Khoo JC: Activation of myocardial neutral triglyceride lipase and neutral cholesteryl esterase by cAMP-dependent protein kinase. J Biol Chem 260: 5879–5882, 1985

    PubMed  CAS  Google Scholar 

  44. Ramirez I, Kryski AJ, Ben-Zee v O, Schotz MC, Se verson DL: Characterization of triacylglycerol hydrolase activities in isolated cells from the hearts. Biochem J 232: 229–236, 1985

    PubMed  CAS  Google Scholar 

  45. Severson DL, Hurley B: Regulation of rat heart triacylglycerol ester hydrolases by free fatty acyl-CoA and fatty acylcarnitine. J Mol Cell Cardiol 14: 467–474, 1982

    Article  PubMed  CAS  Google Scholar 

  46. Stam H, Hülsmann WC: Regulation of lipases involved in the supply of substrate fatty acids for the heart. Eur Heart J 6: 158–167, 1985

    PubMed  CAS  Google Scholar 

  47. McDonough KH, Neely JR: Inhibition of myocardial lipase by palmityl CoA. J Mol Cell Cardiol 20 Suppl II: 31–39, 1988

    Article  PubMed  CAS  Google Scholar 

  48. Kohn MC, Garfinkel D: Computer simulation of metabolism in palmitate-perfused rat heart I. Palmitate oxidation. Ann Biomed Engl 11: 361–384, 1984

    Article  Google Scholar 

  49. Palmer WK, Caruso RA, Oscai LB: Protein kinase inhibitor blocks the activation of a myocardial triacylglycerol lipase. J Mol Cell Cardiol 19: 653–659, 1987

    Article  PubMed  CAS  Google Scholar 

  50. Schoonderwoerd K, Broekhoven-Schokker S, Hülsmann WC, Stam H: Stimulation of myocardial neutral triglyceride lipase activity by adenosine-3’:5’-monophosphate: involvement of glycogenosis. Basic Res Cardiol 82 Suppl 1: 29–36, 1987

    Google Scholar 

  51. Severson DL, Caroll R, Kryski A. Jr, Ramirez I: Short-term incubation of cardiac myocytes with isoprenaline has no effect on heparin-releasable or cellular lipoprotein lipase activity Biochem J 248: 289–292, 1987

    PubMed  CAS  Google Scholar 

  52. Palmer WK, Kane TA: Hormone stimulated lipolysis in cardiac myocytes. Biochem J 216: 241–243, 1983

    PubMed  CAS  Google Scholar 

  53. Masters TN, Glaviano VV: The effects of norepinephrine and propranolol on myocardial subcellular distribution of triglycerides and free fatty acids. J Pharmacol Exp Ther 182: 246–265, 1972

    PubMed  CAS  Google Scholar 

  54. Takenaka F, Takeo S: Effects of isoproterenol on myocardial lipid metabolism in rat hearts perfused with and without exogenous substrates. J Mol Cell Cardiol 8: 925–940, 1976

    Article  PubMed  CAS  Google Scholar 

  55. Hülsmann WC, Stam H: Lipolysis in heart and adipose tissue, effects of inhibition of glycogenosis and uncoupling of oxidative phosphorylation. Biochem Biophys Res Commun 88: 867–872, 1979

    Article  PubMed  Google Scholar 

  56. Hülsmann WC, Stam H, Jansen H: Localization and function of myocardial lipolysis. Basic Res Cardiol 79: 268–273, 1984

    Article  PubMed  Google Scholar 

  57. Schoonderwoerd K, Broekhoven-Schokker S, Hülsmann WC, Stam H: Enhanced lipolysis of myocardial triglycerides during low flow ischemia and anoxia in the isolated rat heart (in press)

    Google Scholar 

  58. Stam H, Hülsmann WC: Intracellular origin and regulation of endogenous lipolysis in rat heart. In: Chazov E, Smirm-nov V, Dhalla ND (eds), Advances in Myocardiology Vol 3, Plenum publishing corporation, 1982, pp 499–507

    Google Scholar 

  59. Dhalla NS, Yates JC, Proveda V: Calcium linked changes in myocardial metabolism in the isolated perfused rat heart. Can J Physiol Pharmacol 55: 925–933, 1977

    Article  PubMed  CAS  Google Scholar 

  60. Hron WT, Jesmok GJ, Lombardo LA, Menahan LA, Lech JL: Calcium dependency of hormone stimulated lipolysis in the isolated rat heart. J Mol Cell Cardiol 9: 733–748, 1977

    Article  PubMed  Google Scholar 

  61. Hülsmann WC, Stam H, Lamers JMJ: Localization and function of lipase and their reaction products in rat heart. In: Ferrari R, Katz A, Shug A, Visioli O (eds) Myocardial ischemia and lipid metabolism. Plenum publishing corporation, New York, 1984, 27–37

    Google Scholar 

  62. Strange RC, Vetter N, Rowe MJ, Oliver MF: Plasma cAMP and total catecholamines during myocardial infarction in man. Eur J Clin Invest 4: 115–119, 1974

    CAS  Google Scholar 

  63. Vetter NJ, Strange RC, Adams W, Oliver MF: Initial metabolic and hormonal response to acute myocardial infarction. Lancet 1: 284–289, 1974

    CAS  Google Scholar 

  64. Vik-Mo H, Riemersma RA, Mjøs OD, Oliver MF: Effect of myocardial ischemia and antilipolytic agents on lipolysis and fatty acid metabolism in the in situ dog heart. Scand J Clin Lab Invest 39: 559–568, 1979

    Article  PubMed  CAS  Google Scholar 

  65. Jodalen H, Stangeland L, Grong K, Vik-Mo H, Lekven J: Lipid accumulation in the myocardium during acute regional ischaemia in cats. J Mol Cell Cardiol 17: 973–980, 1985

    Article  PubMed  CAS  Google Scholar 

  66. Whitmer JT, Idell-Wenger JA, Rovetto MJ, Neely JR: Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem 253: 4305–4309, 1977

    Google Scholar 

  67. Trach V, Buschmans-Denkel E, Schaper W: Relationship between lipolysis and glycolysis during ischemia in the isolated rat heart. Basic Res Cardiol 81: 454–464, 1986

    Article  PubMed  CAS  Google Scholar 

  68. Scheuer J, Brachfeld N: Myocardial uptake and fractional distribution of palmitate-1-14C by the ischemic dog heart. Metabolism 15: 945–954, 1966

    Article  PubMed  CAS  Google Scholar 

  69. Heathers GP, Brunt RV: The effect of coronary artery occlusion and reperfusion on the activities of triglyceride lipase and glycerol-3-phosphate acyltransferase in the isolated perfused rat heart. J Mol Cell Cardiol 17: 907–916, 1985

    Article  PubMed  CAS  Google Scholar 

  70. Prinzen FW, Van der Vusse GJ, Artz T, Roemen THM, Caumans WH, Reneman RS: Accumulation of non-ester-ified fatty acids in ischemic canine myocardium. Am J Physiol 247: H264–H272, 1984

    PubMed  CAS  Google Scholar 

  71. Burton KP, Buja LM, Sen A, Willerson JT, Chien KR: Accumulation of arachidonate in triacylglycerols and un-esterified fatty acids during ischemia and reflow in the isolated rat heart. Am J Pathol 124: 238–245, 1986

    PubMed  CAS  Google Scholar 

  72. Schwartz P, Piper HM, Spohr R, Spieckermann PG: Ultrastructure of cultured adult myocardial cells during anoxia and reoxygenation. Am J Pathol 115: 349–361, 1984

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schoonderwoerd, K., van der Kraaij, T., Hülsmann, W.C., Stam, H. (1989). Hormones and triacylglycerol metabolism under normoxic and ischemic conditions. In: Van Der Vusse, G.J. (eds) Lipid Metabolism in Normoxic and Ischemic Heart. Developments in Molecular and Cellular Biochemistry, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1611-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1611-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8891-6

  • Online ISBN: 978-1-4613-1611-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics