Skip to main content

Anthracycline resistance

  • Chapter
Drug Resistance in Cancer Therapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 48))

Abstract

The antitumor properties of anthracyclines were discovered in 1963, when daunomycin was found to be cytotoxic to leukemic cells [1], Adriamycin, a closely related anthracycline, was discovered in 1969 and also showed potent antitumor activity [2,3]. Today, daunorubicin and doxorubicin are used extensively in cancer chemotherapy, although severe side effects and development of drug resistance continue to place limits on the effectiveness of these agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DiMarco, A., Gaetani, M., Orezzi, P., Silvestrini, R., Soldati, M., Dasdia, T. and Valentini, L. (1964). Daunomycin, a new antibiotic of the rhodomycin group. Nature 201: 706–707.

    Article  PubMed  CAS  Google Scholar 

  2. Arcamone, F., Francescli, G.F., Penco, S. and Selva, A. (1969). Adriamycin, a novel antitumor antibiotic. Tetrahedron Lett. 13:1007–1010.

    Article  PubMed  Google Scholar 

  3. Bonadonna, G., Monfardini, S., DeLena, M. and Fossati-Bellani, F. (1969). Clinical evaluation of adriamycin, a new antitumor antibiotic. Br. Med. J. 3:503–506.

    Article  PubMed  CAS  Google Scholar 

  4. DiMarco, A., Zunino, F., Silvestrini, R., Gambarucci, C. and Gambetta, R.A. (1971). Interaction of some daunomycin derivatives with deoxyribonucleic acid and their biological activity. Biochem. Pharmacol. 20:1323–1328.

    Article  CAS  Google Scholar 

  5. Byrn, S.R. and Dolch, G.D. (1978). Analysis of binding of daunorubicin and doxorubicin to DNA using computerized curve fitting procedures. J. Pharmacol. Sci. 67:688–693.

    Article  CAS  Google Scholar 

  6. Calendi, E., DiMarco, A., Reggiani, M., Scarpinato, B. and Valentini, L. (1965). On physico-chemical interactions between daunomycin and nucleic acids. Biochim. Biophys. Acta 103:25–49.

    PubMed  CAS  Google Scholar 

  7. Pigram, W.J., Fuller, W. and Hamilton, L.D.H. (1972). Stereochemistry of intercalation: Interaction of daunomycin with DNA. Nature 235:17–19.

    Article  CAS  Google Scholar 

  8. Bachur, N.R. (1975). Biochemical pharmacology of the anthracycline antibiotics. In Cancer Chemotherapy, ACS Symposium Series, American Chemical Society, 30:58–70.

    Google Scholar 

  9. Henry, D.W. (1975). Adriamycin. In Cancer Chemotherapy, ACS Symposium Series, American Chemical Society, 30:15–57.

    Google Scholar 

  10. Schwartz, H.S. (1975). DNA breaks in P388 tumor cells in mice after treatment with daunomycin and adriamycin. Res. Commun. Chem. Path. Pharmacol. 10:51–64.

    CAS  Google Scholar 

  11. Byfield, J.E., Lee, Y.C. and Tu, L. (1977). Molecular interactions between adriamycin and X-ray damage in mammalian tumor cells. Int. J. Cancer 19:186–193.

    Article  PubMed  CAS  Google Scholar 

  12. Umezawa, K., Sawamura, M., Matsushima, T. and Sugimura, T. (1978). Mutagenicity of aclacinomycin A and daunomycin derivatives. Cancer Res. 38:1782–1784.

    PubMed  CAS  Google Scholar 

  13. Oki, T. (1977). New anthracycline antibiotics. J. Antibiot. 30 (Suppl.):76–78.

    Google Scholar 

  14. Solica, E., Ballerini, L., Bellini, O., Sala, L. and Bertazzoli, C. (1978). Mammary tumors induced in rats by adriamycin and daunomycin. Cancer Res. 38:1444–1446.

    Google Scholar 

  15. Tewey, K.M., Rouse, T.C., Yang, L., Halligan, B.P. and Liu, L.F. (1984). Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 226:466–468.

    Article  PubMed  CAS  Google Scholar 

  16. Handa, K. and Sato, S. (1975). Generation of free radicals of quinone group-containing anticancer chemicals in NADPH-microsome system as evidenced by initiation of sulfite oxidation. Gann 66:43–47.

    PubMed  CAS  Google Scholar 

  17. Handa, K. and Sato, S. (1976). Stimulation of microsomal NADPH oxidation by quinone group containing anticancer chemicals. Gann 67:523–528.

    PubMed  CAS  Google Scholar 

  18. Bachur, N.R., Gordon, S.L. and Gee, M.V. (1977). Anthracycline antibiotic augmentation of microsomal electron transport and free radical formation. Mol. Pharmacol. 13:901–910.

    PubMed  CAS  Google Scholar 

  19. Goodman, J. and Hochstein, P. (1977). Generation of free radicals and lipid peroxidation by redox cycling of adriamycin and daunomycin. Biochem. Biophys. Res. Commun. 77:797–803.

    Article  PubMed  CAS  Google Scholar 

  20. Bachur, N.R., Gordon, S.L. and Gee, M.V. (1978). A general mechanism for microsomal activation of quinone anticancer agents to free radicals. Cancer Res. 38:1745–1750.

    PubMed  CAS  Google Scholar 

  21. Fridovich, I. (1978). The biology of oxygen radicals. The superoxide radical is an agent of oxygen toxicity; superoxide dismutase provide an important defense. Science 201:875–880.

    Article  PubMed  CAS  Google Scholar 

  22. Tritton, T.R. and Yee, G. (1982). The anticancer agent adriamycin is actively cytotoxic without entering cells. Science 217:248–250.

    Article  CAS  Google Scholar 

  23. Tokes, Z.A., Rogers, K.E. and Rembaum, A. (1982). Synthesis of adriamycin-coupled polyglutaraldehyde microspheres and evaluation of their cytostatic activity. Proc. Natl. Acad. Sci. USA 79:2026–2030.

    Article  PubMed  CAS  Google Scholar 

  24. Juliano, R.L. and Ling, V. (1976). A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta. 455:152–162.

    Article  PubMed  CAS  Google Scholar 

  25. Kartner, N., Evernden-Porelle, D., Bradley, G. and Ling, V. (1985). Detection of P-glycoprotein in multidrug-resistant cell lines by monoclonal antibodies. Nature 316:820–823.

    Article  PubMed  CAS  Google Scholar 

  26. Gerlach, J.H., Bell, D.R., Karakousis, C., Slocum, H.K., Kartner, N., Rustum, Y.M., Ling, V. and Baker, R.M. (1987). P-glycoprotein in human sarcoma: Evidence for multidrug resistance. J. Clin. Oncol. 5:1452–1460.

    PubMed  CAS  Google Scholar 

  27. Roninson, I.B., Abelson, H.T., Housman, D.E., Howell, N. and Varshavsky, A. (1984). Amplification of specific DNA sequences correlates with multidrug resistance in Chinese hamster cells. Nature 309:626–628.

    Article  PubMed  CAS  Google Scholar 

  28. Gros, P., Croop, J., Roninson, I., Varshavsky, A. and Housman, D.E. (1986). Isolation and characterization of DNA sequences amplified in multidrug resistant hamster cells. Proc. Natl. Acad. Sci. USA 83:337–341.

    Article  PubMed  CAS  Google Scholar 

  29. Roninson, I.B., Chin, J.E., Choi, K., Gros, P., Housman, D.E., Fojo, A., Shen, D.-W., Gottesman, M.M. and Pastan, I. (1986). Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc. Natl. Acad. Sci. USA 83:4538–4542.

    Article  PubMed  CAS  Google Scholar 

  30. Gerlach, J.H., Bell, D.R., Karakousis, C, Slocum, H.K., Kartner, N., Rustum, Y.M., Ling, V. and Baker, M. (1987). P-glycoprotein in human sarcoma: Evidence for multidrug resistance. J. Clin. Oncol. 5:1452–1460.

    PubMed  CAS  Google Scholar 

  31. Gros, P., Croop, J. and Housman, D. (1986). Mammalian multidrug resistance gene: Complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell 47:371–380.

    Article  PubMed  CAS  Google Scholar 

  32. Chen, C, Chin, J.E., Veda, K., Clark, D.P., Pastan, I., Gottesman, M.M. and Roninson, I.B. (1986). Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47:381–389.

    Article  PubMed  CAS  Google Scholar 

  33. Gerlach, J.H., Endicott, J.A., Juranka, P.F., Henderson, G., Sarangi, F., Deuchars, K.L. and Ling, V. (1986). Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance. Nature, 324, 485–489.

    Article  PubMed  CAS  Google Scholar 

  34. Tsuruo, T., Iida, H., Kitatani, Y., Yokota, K., Tsukagoshi, S. and Sukurai, Y. (1984). Effects of quinidine and related compounds on cytotoxicity and cellular accumulation of vincristine and adriamycin in drug-resistant tumor cells. Cancer Res. 44:4303–4307.

    PubMed  CAS  Google Scholar 

  35. Cornwell, M.M., Gottesman, M.M. and Pastan, I. (1986). Increased vinblastine binding to membrane vesicles from multidrug-resistant KB cells. J. Biol. Chem. 261:7921–7928.

    PubMed  CAS  Google Scholar 

  36. Cornwell, M.M., Pastan, I. and Gottesman, M.M. (1987). Certain calcium channel blockers bind specifically to multidrug-resistant human KB carcinoma membrane vesicles and inhibit drug binding to P-glycoprotein. J. Biol. Chem. 262:2166–2170.

    PubMed  CAS  Google Scholar 

  37. Dano, K. (1973). Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim. Biophys. Acta 323:466–483.

    Article  PubMed  CAS  Google Scholar 

  38. Inaba, M. and Johnson, R.K. (1978). Uptake and retention of adriamycin and daunorubicin by sensitive and anthracycline-resistant sublines of P388 leukemia. Biochem. Pharmacol. 27:2123–2130.

    Article  PubMed  CAS  Google Scholar 

  39. Wheeler, C., Rader, R. and Kessel, D. (1982). Membrane alterations associated with progressive adriamycin resistance. Biochem. Pharmacol. 31:2691–2693.

    Article  PubMed  CAS  Google Scholar 

  40. Seeber, S., Osieka, R., Schmidt, C.G., Achterrath, W. and Crooke, S.T. (1982). In vivo resistance towards anthracyclines, etoposide, and cw-diamminedichloroplatinum (II). Cancer Res. 42:4719–4725.

    PubMed  CAS  Google Scholar 

  41. Siegfried, J.M., Tritton, T.R. and Sartorelli, A.C. (1983). Comparison of anthracycline concentrations in S180 cell lines of varying sensitivity. Eur. J. Cancer Clin. Oncol. 19:1133–1141.

    Article  PubMed  CAS  Google Scholar 

  42. Rintoul, D.A. and Center, M.S. (1984). Involvement of plasma membrane lipid structural order in adriamycin resistance in Chinese hamster lung cells. Cancer Res. 44:4978–4980.

    PubMed  CAS  Google Scholar 

  43. Kessel, D. and Corbett, T. (1985). Correlations between anthracycline resistance, drug accumulation and membrane glycoprotein patterns in solid tumors of mice. Cancer Lett. 28:187–193.

    Article  PubMed  CAS  Google Scholar 

  44. Beck, W.T., Cirtain, M.C., Danks, M.K., Felsted, R.L., Safa, A.R., Wolverton, J.S., Suttle, D.P. and Trent, J.M. (1987). Pharmacological, molecular, and cytogenetic analysis of ‘atypical’ multidrug-resistant human leukemic cells. Cancer Res. 47:5455–5460.

    PubMed  CAS  Google Scholar 

  45. Mirski, S.E.L., Gerlach, J.H. and Cole, S.P.C. (1987). Multidrug resistance in a human small cell lung cancer cell line selected in adriamycin. Cancer Res. 47:2594–2598.

    PubMed  CAS  Google Scholar 

  46. Lane, P., Vichi, P., Bain, D.L. and Tritton, T.R. (1987). Temperature dependence studies of adriamycin uptake the cytotoxicity. Cancer Res. 47:4038–4042.

    PubMed  CAS  Google Scholar 

  47. Burke, T.G., Morin, M.J., Sartorelli, A.C., Lane, P.E. and Tritton, T.R. (1987). Function of the anthracycline amino group in cellular transport and cytotoxicity. Mol. Pharmacol. 31:552–556.

    PubMed  CAS  Google Scholar 

  48. Burke, T.G. and Tritton, T.R. (1985). Structural basis for anthracycline selectivity for unilamellar phosphatidyl-choline vesicles: An equilibrium binding study. Biochemistry 24:1768–1776.

    Article  PubMed  CAS  Google Scholar 

  49. Burke, T.G. and Tritton, T.R. (1985). Location and dynamics of anthracyclines bound to unilamellar phosphatidylcholine vesicles. Biochemistry 24:5972–5980.

    Article  PubMed  CAS  Google Scholar 

  50. Kessel, D. (1979). Enhanced glycosylation induced by adriamycin. Mol. Pharmacol. 16:306–312.

    PubMed  CAS  Google Scholar 

  51. Garman, D., Albers, L. and Center, M.S. (1983). Identification and characterization of a plasma membrane phosphoprotein which is present in Chinese hamster lung cells resistant to adriamycin. Biochem. Pharmacol. 32:3633–3637.

    Article  PubMed  CAS  Google Scholar 

  52. Center, M.S. (1983). Evidence that adriamycin resistance in Chinese hamster lung cells is regulated by phosphorylation of a plasma membrane glycoprotein. Biochem. Biophys. Res. Commun. 115:159–166.

    Article  PubMed  CAS  Google Scholar 

  53. Center, M.S. (1985). Mechanisms regulating cell resistance to adriamycin: Evidence that drug accumulation in resistant cells is modulated by phosphorylation of a plasma membrane glycoprotein. Biochem. Pharmacol. 34:1471–1476.

    Article  PubMed  CAS  Google Scholar 

  54. Marsh, W. and Center, M.S. (1985). Evidence for the involvement of two distinct membrane proteins in adriamycin resistance in Chinese hamster lung cells. Cancer Res. 45:6088–6092.

    PubMed  CAS  Google Scholar 

  55. Meliado, W. and Horwitz, S.B. (1987). Phosphorylation of the multidrug resistance associated glycoprotein. Biochemistry 26:6900–6904.

    Article  Google Scholar 

  56. Abraham, I., Hunter, R.J., Sampson, K.E., Smith, S., Gottesman, M.M. and Mayo, J.K. (1987). Cyclic AMP-dependent protein kinase regulates sensitivity of cells to multiple drugs. Mol. Cell. Biol. 7:3098–3106.

    PubMed  CAS  Google Scholar 

  57. Shanbaky, N.M., Samy, T.S., Rubin, R. and Krishan, A. (1986). Membrane-associated proteins of adriamycin sensitive and resistant murine leukemic P388 cells. Int. J. Pept. Protein Res. 27:414–420.

    Article  PubMed  CAS  Google Scholar 

  58. Sugimoto, Y., Nishimura, T., Suzuki, H. and Tanaka, N. (1981). Alteration of membrane-associated enzymes in drug-resistant sublines of mouse lymphoblastoma L5178Y cells. J. Antibiot. 34:1200–1205.

    PubMed  CAS  Google Scholar 

  59. Meyers, M.B., Merluzzi, V.J., Spengler, B.A. and Biedler, J.L. (1986). Epidermal growth factor receptor is increased in multidrug resistant Chinese hamster and mouse tumor cells. Proc. Natl. Acad. Sci. USA 83:5521–5525.

    Article  PubMed  CAS  Google Scholar 

  60. Zuckier, G. and Tritton, T.R. (1983). Up-regulation of epidermal growth factor receptors by adriamycin. Exp. Cell Res. 148:155–161.

    Article  PubMed  CAS  Google Scholar 

  61. Peterson, R.H., Meyers, M.B., Spengler, B.A. and Biedler, J.L. (1983). Alterations of plasma membrane glycopeptides and gangliosides of Chinese hamster cells accompanying development of resistance to daunorubicin and vincristine. Cancer Res. 43:222–228.

    PubMed  CAS  Google Scholar 

  62. Wallach, D.F.H. (1975). Membrane Molecular Biology of Neoplastic Cells. Elsevier: New York.

    Google Scholar 

  63. Ramu, A., Glaubiger, D. and Weintraub, H. (1984). Differences in lipid composition of doxorubicin-sensitive and resistant P388 cells. Cancer Treat. Rep. 68:637–641.

    PubMed  CAS  Google Scholar 

  64. Vrignaud, P., Montaudon, D., Londos-Gagliardi, D. and Robert, J. (1986). Fatty acid composition, transport and metabolism in doxorubicin-sensitive and resistant rat glioblastoma cells. Cancer Res. 46:3256–3261.

    Google Scholar 

  65. Holleran, W.M., DeGregorio, M.W., Ganapathi, R., Wilbur, J.R. and Macher, B.A. (1986). Characterization of cellular lipids in doxorubicin-sensitive and-resistant P388 mouse leukemia cells. Cancer Chemother. Pharmacol. 17:11–15.

    Article  PubMed  CAS  Google Scholar 

  66. Tritton, T.R., Murphree, S.A. and Sartorelli, A.C. (1977). Characterization of drug membrane interactions using the liposome system. Biochem. Pharmacol. 26:2319–2323.

    Article  PubMed  CAS  Google Scholar 

  67. Goldstein, D.B. (1984). The effects of drugs on membrane fluidity. Annu. Rev. Pharmacol. Toxicol. 24:43–64.

    Article  PubMed  CAS  Google Scholar 

  68. Shinitzky, M. and Barenholz, Y. (1978). Fluidity parameters on lipid regions determined by fluorescence polarization. Biochim. Biophys. Acta 515:367–394.

    PubMed  CAS  Google Scholar 

  69. Lakowicz, J.R., Prendergast, F.G. and Hogan, I. (1979). Differential phase fluorimetric investigation of diphenylhexatriene in lipid bilayers: Quantitation of hindered depolarizing rotation. Biochemistry 18:508–519.

    Article  PubMed  CAS  Google Scholar 

  70. Ramu, A., Glaubiger, D., Magrath, I.T. and Joshi, A. (1983). Plasma membrane lipid structural order in doxorubicin-sensitive and resistant P388 cells. Cancer Res. 43:5533–5537.

    PubMed  CAS  Google Scholar 

  71. Siegfried, J.M., Kennedy, K.A., Sartorelli, A.C. and Tritton, T.R. (1983). The role of membranes in the mechanism of action of the antineoplastic agent adriamycin: Spin labeling studies with chemically hypoxic and drug resistant tumor cells. J. Biol. Chem. 258:339–343.

    PubMed  CAS  Google Scholar 

  72. Kessel, D. and Wilberding, C. (1985).Anthracycline resistance in P388 murine leukemia and its circumvention by calcium antagonists. Cancer Res. 45:1687–1691.

    PubMed  CAS  Google Scholar 

  73. Ramu, A., Fuks, S., Gatt, S. and Glaubiger, D. (1984). Reversal of acquired resistance to doxorubicin in P388 murine leukemia cells by perhexiline maleate. Cancer Res. 44:144–148.

    PubMed  CAS  Google Scholar 

  74. Keyes, S.R., Hickman, J.A. and Sartorelli, A.C. (1987). The effects of adriamycin on intracellular calcium concentrations of L1210 murine leukemia cells. Eur. J. Cancer Clin. Oncol. 23:295–302.

    Article  PubMed  CAS  Google Scholar 

  75. Murphree, S.A., Tritton, T.R., Smith, P.L. and Sartorelli, A.C. (1981). Adriamycin induces changes in surface membrane of sarcoma 180 ascites cells. Biochim. Biophys. Acta 649:317–324.

    Article  PubMed  CAS  Google Scholar 

  76. Siegfried, J.M., Kennedy, K.A., Sartorelli, A.C. and Tritton, T.R. (1983). Effects of anthracyclines on oxygenated and hypoxic tumor cells. Cancer Res. 43:54–59.

    PubMed  Google Scholar 

  77. Roper, P.R. and Drewinko, B. (1976). Comparison of in vitro methods to determine drug-induced cell lethality. Cancer Res. 36:2182–2187.

    PubMed  CAS  Google Scholar 

  78. Herman, T.S. (1983). Temperature dependence of adriamycin, cis-diaminedichloro platinum, bleomycin and BCNU cytotoxicity in vitro. Cancer Res. 43:517–520.

    PubMed  CAS  Google Scholar 

  79. Huybrechts, M., Symann, M. and Trouet, A. (1979). Effects of daunorubicin and doxorubicin, free and associated with DNA, on hemopoietic stem cells. Cancer Res. 39:3738–3743.

    PubMed  CAS  Google Scholar 

  80. Wang, J.J., Chervinsky, D.S. and Rosen, J.M. (1972). Comparative biochemical studies of adriamycin and daunomycin in leukemic cells. Cancer Res. 32:511–515.

    PubMed  CAS  Google Scholar 

  81. Grace, T., Kimberly, P., Hacker, M. and Tritton, T.R. (1987). Stimulation of growth by adriamycin. Proc. Am. Assoc. Cancer Res. 28:266.

    Google Scholar 

  82. Thompson, M.G., Chahwala, J.B. and Hickman, J.A. (1987). Inhibition of human erythrocyte inositol lipid metabolism by adriamycin. Cancer Res. 47:2799–2803.

    PubMed  CAS  Google Scholar 

  83. Posada, J.A. and Tritton, T.R. (1987). Initial events associated with adriamycin cytotoxicity include disruption of phosphatidylinositol turnover. Proc. Am. Assoc. Cancer Res. 28:269.

    Google Scholar 

  84. Sayoun, N., Wolf, M., Besterman, T.H., Sander, M., Levine H. III, Chang, K. and Cuatrecasas, P. (1986). Protein kinase C phosphorylates topoisomerase II: Topoisomerase activation and its possible role in phorbol ester-induced differentiation of HL-60 cells. Proc. Natl. Acad. Sci USA 83:1603–1607.

    Article  Google Scholar 

  85. Fine, R.L., Jett, M., Cowan, K., Weiss, R.B. and Chabner, B.A. (1987). Increased uptake of 3H-inositol and incorporation into phosphatidylinositols (PI) and hydrolysis of PI in multidrug resistant (MDR) MCF-7 cells. Proc. Am. Assoc. Cancer Res. 28:291.

    Google Scholar 

  86. Schwantke, N., Bouffant, F.L., Doree, M. and Peuch, C.J.L. (1985). Protein kinase C: Properties and possible role in cellular division and differentiation. Biochimie 67:1103–1110.

    Article  PubMed  CAS  Google Scholar 

  87. Katch, H., Wise, B.C., Wrenn, R.W. and Kuo, J.F. (1981). Inhibition by adriamycin of calmodulin-sensitive and phospholipid-sensitive calcium-dependent phosphorylation of endogenous proteins from the heart. Biochem. J. 198:199–205.

    Google Scholar 

  88. Fine, R.L., Patel, J., Hamilton, T.C., Cowan, K., Curt, G.A., Friedman, M.A. and Chabner, B.A. (1986). Activation of protein kinase C increases vincristine efflux and resistance in drug sensitive MCF-7 cells. Proc. Am. Assoc. Cancer Res. 27:271.

    Google Scholar 

  89. Ling, V. and Riordan, J.A. (1985). Genetic and biochemical characterization of multi-drug resistance. Pharmacol. Ther. 28:51–75.

    Article  PubMed  Google Scholar 

  90. Palayoor, S.T., Stein, J.M. and Hait, W.N. (1987). Inhibition of protein kinase C by antineoplastic agents: Implications for drug resistance. Biochem. Biophys. Res. Commun. 148:718–725.

    Article  PubMed  CAS  Google Scholar 

  91. Batist, G., Tulpule, A., Sinha, B.K., Katki, A.G., Myers, CE. and Cowan, K.H. (1986). Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J. Biol. Chem. 261:15544–15549.

    PubMed  CAS  Google Scholar 

  92. Boyland, E. and Chasseaud, L.F. (1969). The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis. Adv. Enzymol. 32:173–219.

    PubMed  CAS  Google Scholar 

  93. Bachur, N.R., Gordon, S.L., Gee, M.V. and Kon, H. (1979). NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals. Proc. Natl. Acad. Sci. USA 76:954–957.

    Article  PubMed  CAS  Google Scholar 

  94. Zamora, J.M. and Beck, W.T. (1986). Chloroquine enhancement of anticancer drug cytotoxicity in multiple drug resistant human leukemic cells. Biochem. Pharmacol. 35:4303–4310.

    Article  PubMed  CAS  Google Scholar 

  95. Beck, W.T. (1987). The cell biology of multiple drug resistance. Biochem. Pharmacol. 36:2879–2887.

    Article  PubMed  CAS  Google Scholar 

  96. Ahmed, N.K. and Vasanthakumar, G. (1987). Characterization of daunorubicin resistance in K562 leukemia cells lacking daunorubicin reductase activity. Eur. J. Cancer Clin. Oncol. 23:1329–1336.

    Article  PubMed  CAS  Google Scholar 

  97. Coloflore, J.R., Ara, G., Berry, D. and Belli, J.A. (1982). Enhanced survival of adriamycin-treated Chinese hamster cells by 2-deoxy-D-glucose and 2,4-dinitrophenol. Cancer Res. 42:3934–3940.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bhushan, A., Kermode, J.C., Posada, J., Tritton, T.R. (1989). Anthracycline resistance. In: Ozols, R.F. (eds) Drug Resistance in Cancer Therapy. Cancer Treatment and Research, vol 48. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1601-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1601-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8886-2

  • Online ISBN: 978-1-4613-1601-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics