Skip to main content

Tumor cell drug and radiation resistance: Does an interrelationship exist?

  • Chapter
Drug Resistance in Cancer Therapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 48))

Abstract

The use of aggressive, combined modality cancer treatment has made a positive impact in the management of several human malignancies. Unfortunately, despite this aggressive approach, many tumors are not controlled, and inevitable questions arise concerning the optimal use of combined modality therapy. A particularly difficult issue is that of determining the optimal timing sequence of each modality. For example, it is known that certain chemotherapy drugs can interact with radiation such that the radiation effects are enhanced. Depending upon the particular drugs used, the enhancement might be maximal if both the radiation and drugs were given simultaneously. Such an approach might be desirable if the effects were restricted to the tumor. Unfortunately, disastrous, unwanted normal tissue responses can result from such a combination. Indeed, an overwhelming number of permutations can be envisioned when combining multiple-agent chemotherapy and radiation therapy with respect to timing, notwithstanding the possible differences in response of tumor versus normal tissues to such combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Minna, J.D., Higgins, G.A. and Glatstein, E.J. (1982). Cancer of the lung. In Principles and Practice of Oncology, eds. DeVita, V.T., Jr., Hellman, S., Rosenberg, S.A., Lippincott, Philadelphia, pp. 396–474.

    Google Scholar 

  2. Goldie, J.H. and Coldman, A.J. (1979). A mathematical model formulating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep. 63:1727–1733.

    PubMed  CAS  Google Scholar 

  3. Coldman, A.J. and Goldie, J.H. (1982). A mathematical model of drug resistance in neoplasms. In Drug and Hormone Resistance in Neoplasia, eds. Bruchovsksy, N., Goldie, J.H., CRC Press, Boca Raton, FL., pp. 55–78.

    Google Scholar 

  4. Ling, V., Kartner, N., Sudo, T., Siminovitch, L. and Riordan, J.R. (1983). Multidrug-resistance phenotype in Chinese hamster ovary cells. Cancer Treat. Rep. 67:869–874.

    PubMed  CAS  Google Scholar 

  5. Munro, T.R. (1970). The relative radiosensitivity of the nucleus and cytoplasm of the Chinese hamster fibroblasts. Radiat. Res. 42:451–470.

    Article  PubMed  CAS  Google Scholar 

  6. Russo, A., Mitchell, J.B., Kinsella, T., Morstyn, G. and Glatstein, E. (1985). Determinants of radiosensitivity. Semin. Oncol. 12:332–349.

    PubMed  CAS  Google Scholar 

  7. Malaise, E.P., Fertil, B., Chavaudra, N. and Guichard, M. (1986). Distribution of radiation sensitivities for human tumor cells of specific histological types: Comparison of in vitro and in vivo data. Int. J. Radiat. Oncol. Biol. Phys. 12:617–624.

    Article  PubMed  CAS  Google Scholar 

  8. Russo, A., DeGraff, W., Friedman, N. and Mitchell, J.B. (1986). Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs. Cancer Res. 46:2845–2848.

    PubMed  CAS  Google Scholar 

  9. Belli, J.A. and Harris, J.R. (1979). Adriamycin resistance and radiation response. Int. J. Radiat. Oncol. Biol. Phys. 5:1231–1234.

    PubMed  CAS  Google Scholar 

  10. Wallner, K. and Li, G.C. (1986). Adriamycin resistance, heat resistance, and radiation response in Chinese hamster fibroblasts. Int. J. Radiat. Oncol. Biol. Phys. 12:829–833.

    Article  PubMed  CAS  Google Scholar 

  11. Wallner, K.E. and Li, G.C. (1987). Effect of cisplatin resistance on cellular radiation response. Int. J. Radiat. Oncol. Biol. Phys. 13:587–591.

    Article  PubMed  CAS  Google Scholar 

  12. Louie, K.G., Behrens, B.C., Kinsella, T.J., Hamilton, T.C., Grotzinger, K.R., McKoy, W.M., Winker, M.A. and Ozols, R.F. (1985). Radiation survival parameters of antineoplastic drug-sensitive and -resistant human ovarian cancer cell lines and their modification by buthionine sulfoximine. Cancer Res. 45:2110–2115.

    PubMed  CAS  Google Scholar 

  13. Hamilton, T.C., Young, R.C. and Ozols, R.F. (1984). Experimental model systems of ovarian cancer: Applications to the design and evaluation of new treatment approaches. Semin. Oncol. 11:285–298.

    PubMed  CAS  Google Scholar 

  14. Hamilton, T.C., Winker, M.A., Louie, K.G., Batist, G., Behrens, B.E., Tsuruo, T., Grotzinger, K.R., McKoy, W.M., Young, R.C. and Ozols, R.F. (1985). Augmentation of adriamycin, melphalan, and cisplatin cytotoxicity in drug resistant and sensitive human ovarian cancer cell lines by buthionine sulfoximine mediated glutathione depletion. Biochem. Pharmacol. 34:2583–2586.

    CAS  Google Scholar 

  15. Mitchell, J.B. and Russo, A. (1987). The role of glutathione in radiation and drug-induced cytotoxicity. Br. J. Cancer [Suppl]. 55:96–104.

    CAS  Google Scholar 

  16. Russo, A. and Mitchell, J.B. (1984). Radiation response of Chinese hamster cells after elevation of intracellular glutathione levels. Int. J. Radiat. Oncol. Biol. Phys. 10:1243–1247.

    Article  PubMed  CAS  Google Scholar 

  17. Mitchell, J.B., Russo, A., Biaglow, J.E. and McPherson, S. (1983). Cellular glutathione depletion by diethyl maleate or buthionine sulfoximine: No effect of glutathione depletion on the oxygen enhancement ratio. Radiat. Res. 96:442–428.

    Google Scholar 

  18. Vos, O. and Roos-Verhey, W.S.D. (1988). Radioprotection by glutathione esters and cysteamine in normal and glutathione-depleted mammalian cells. Int. J. Radiat. Biol. 53:273–281.

    Article  CAS  Google Scholar 

  19. Biaglow, J.E., Clark, E.P., Epp, E.R., Morse-Guadio, M., Varnes, M.E. and Mitchell, J.B., (1983). Nonprotein thiols and the radiation response of A549 human lung carcinoma cells. Int. J. Radiat. Biol. 44:489–495.

    Article  CAS  Google Scholar 

  20. Mitchell, J.B., Gamson, J., Russo, A., Friedman, N., DeGraff, W., Carmichael, J. and Glatstein, E. (1988). Chinese hamster pleiotropic multidrug-resistant cells are not radioresistant. NCI Monogr. 6:187–197.

    PubMed  Google Scholar 

  21. Mitchell, J.B., Russo, A., Cowan, K.H. and Glatstein, E. (1988). Radiosensitivity assessment of chemotherapy drug resistant human tumor cell lines. Proc. Am. Assoc. Cancer Res. 29:300.

    Google Scholar 

  22. Brock, W., Campbell, H., Goepfert, H. and Peters, L.J. (1987). Radiosensitivity testing of human tumor cell clutures—A potential method of predicting the response to radiotherapy. Cancer Bull. 39:98–102.

    Google Scholar 

  23. Baker, F.L., Spitzer, G., Ajani, J.A., Brock, W.A., Lukeman, J., Pathak, S., Tomasovic, B., Thielvoldt, D., Williams, M., Vines, C. and Tolfilon, P. (1986). Drug and radiation sensitivity measurements of successful primary monolayer culturing of human tumor cells using cell-adhesive matrix and supplemented medium. Cancer Res. 46:1263–1274.

    PubMed  CAS  Google Scholar 

  24. Sinclair, W.K. (1964). X-ray-induced heritable damage (small-colony formation) in cultured mammalian cells. Radiat. Res. 21:584–611.

    Article  PubMed  CAS  Google Scholar 

  25. Courtenay, V.D. (1969). Radioresistant mutants of L5178Y cells. Radiat. Res. 38:186–203.

    Article  PubMed  CAS  Google Scholar 

  26. Weichselbaum, R.R., Dahlberg, W., Beckett, M., Karrison, T., Miller, D., Clark, J. and Ervin T.J. (1986). Radiation-resistant and repair-proficient human tumor cells may be associated with radiotherapy failure in head-and neck-cancer patients. Proc. Natl. Acad. Sci. USA 83:2684–2688.

    Article  PubMed  CAS  Google Scholar 

  27. Thomlinson, R.H. and Gray, L.H. (1955). The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9:539–549.

    Article  PubMed  CAS  Google Scholar 

  28. Powers, W.E. and Tolmach, L.J. (1963). A multicomponent x-ray survival curve for mouse lymphosarcoma cells irradiated in vivo. Nature 197:710–711.

    Article  PubMed  CAS  Google Scholar 

  29. Urtasun, R.C., Chapman, J.D., Raleigh, J.A., Franko, A.J. and Koch, C.J. (1986). Binding of 3H-misonidazole to solid human tumors as a measure of tumor hypoxia. Int. J. Radiat. Oncol. Biol. Phys. 12:1263–1267.

    Article  PubMed  CAS  Google Scholar 

  30. Hall, E.J. (1988). The oxygen effect and reoxygenation. In Radiobiology for the Radiologist, J.B. Lippincott Co., Philadelphia, pp. 137–160.

    Google Scholar 

  31. Barendsen, G.W., Koot C.J., Van Kersen, G.R., Bewley, D.K., Field, S.B. and Parnell, C.J. (1966). The effect of oxygen on impairment of the proliferative capacity of human cells in culture by ionizing radiations of different LET. Int. J. Radiat. Biol. 10:317–327.

    Article  CAS  Google Scholar 

  32. Broerse, J.J., Barendsen, G.W. and Van Kersen, G.R. (1968). Survival of cultured human cells after irradiation with fast neutrons of different energies in hypoxic and oxygenated conditions. Int. J. Radiat. Biol. 13:559–572.

    Article  CAS  Google Scholar 

  33. Adams, G.E., Flockhart, I.R., Smithen C.E., Stratford, I.J., Wardman, P. and Watts, M.E. (1976). Electron-affinic sensitization. VII. A correlation between structures, one—electron reduction potentials, and efficiencies of nitroimidazoles as hypoxic cell radiosensitizers. Radiat. Res. 67:9–20.

    Article  PubMed  CAS  Google Scholar 

  34. West, C., Stratford, I.J., Barrass, N. and Smith, E. (1981). A comparison of adriamycin and mAMSA in vitro: Cell lethality and SCE studies. Br. J. Cancer 44:798–809.

    Article  PubMed  CAS  Google Scholar 

  35. Thistlethwaite, A.J., Leeper, D.B., Moylan, D.J. and Neriinger, R.E., (1985). pH distribution in human tumors. Int. J. Radiat. Oncol. Biol. Phys. 11:1647–1652.

    Article  PubMed  CAS  Google Scholar 

  36. Benet, L.Z. and Sheiner, L.B., (1985). Pharmacokinetics: The dynamics of drug absorption, distribution, and elimination. In The Pharmacological Basis of Therapeutics, eds., Gilman, A.G., Goodman, L.S., Rail, T.W. and Murad, F., Macmillan Publishing Co., New York, pp. 3–34.

    Google Scholar 

  37. Terasima, R. and Tolmach, L.J. (1963). X-ray sensitivity and DNA synthesis in synchronous populations of HeLa cells. Science 140:490–492.

    Article  PubMed  CAS  Google Scholar 

  38. Morstyn, G., Hsu, S.M., Kinsella, T., Gratzner, H., Russo, A. and Mitchell, J.B. (1983). Bromodeoxyuridine in tumors and chromosomes detected with a monoclonal antibody. J. Clin. Invest. 72:1844–1850.

    Article  PubMed  CAS  Google Scholar 

  39. Wilson, G.D., McNally, N.J., Dunphy, E., Karcher, H. and Pfragner, R. (1985). The labelling index of human and mouse tumors assessed by bromodeoxyuridine staining in vitro and in vivo and flow cytometry. Cytometry 6:641–647.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mitchell, J.B., Russo, A., Cook, J.A., Glatstein, E. (1989). Tumor cell drug and radiation resistance: Does an interrelationship exist?. In: Ozols, R.F. (eds) Drug Resistance in Cancer Therapy. Cancer Treatment and Research, vol 48. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1601-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1601-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8886-2

  • Online ISBN: 978-1-4613-1601-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics