Skip to main content

The platelet-derived growth factor system

  • Chapter
Oncogenes

Part of the book series: Cancer Treatment and Research ((CTAR,volume 47))

  • 75 Accesses

Abstract

Platelet-derived growth factor (PDGF) is a potent mitogen for mesenchymal cells in culture. PDGF was first recognized as a regulator of mesenchymal cell proliferation in the setting of vascular injury and wound healing [1,2]. It has become clear, however, that PDGF and its receptors (the PDGF system) play equally important roles in normal developmental and pathological processes, as well as in the genesis of certain neoplasms. In this respect, the PDGF system is appropriately considered within the broader context of human oncogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ross R, Glomset JA: Atherosclerosis and the arterial smooth muscle cell. Science 180: 1332–1339, 1973.

    Article  PubMed  CAS  Google Scholar 

  2. Ross R, Glomset J, Kariya B, Harker CA: Platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci USA 71:1207–1210, 1974.

    Article  PubMed  CAS  Google Scholar 

  3. Robbins KC, Antoniades HN, Devare SG, Hunkapiller MW, Aaronson SA: Structural and immunological similarities between simian sarcoma virus gene product(s) and human platelet-derived growth factor. Nature 305:605–608, 1983.

    Article  PubMed  CAS  Google Scholar 

  4. Josephs SF, Dalla-Favera R, Gelmann EP, Gallo RC, Wong-staal F: 5′ viral and human cellular sequences corresponding to the transforming gene of simian sarcoma virus. Science 219:503–505, 1983.

    Article  PubMed  CAS  Google Scholar 

  5. Josephs SF, Guo C, Ratner L, Wong-Staal F: Human proto-oncogene nucleotide sequences corresponding to the transforming region of simian sarcoma virus. Science 223:487–491, 1984.

    Article  PubMed  CAS  Google Scholar 

  6. Waterfield MD, Scrace GT, et al.: Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304:35–39, 1983.

    Article  PubMed  CAS  Google Scholar 

  7. Aaronson SA: Nucleotide sequence analysis identifies the human c-sis proto-oncogene as a structural gene for platelet-derived growth factor. Cell 37:123–129, 1984.

    Article  PubMed  Google Scholar 

  8. Devare SG, Reddy EP, Law DJ, Robbins KC, Aaronson SA: Nucleotide sequence of the simian sarcoma virus genome: demonstration that its acquired cellular sequences encode transforming gene product p28sis. Proc Natl Acad Sci USA 80:731–735, 1983.

    Article  PubMed  CAS  Google Scholar 

  9. Devare SG, Reddy, EP, et al.: Nucleotide sequence of the transforming gene of simian sarcoma virus. Proc Natl Acad Sci USA 79:3179–3182, 1982.

    Article  PubMed  CAS  Google Scholar 

  10. Doolittle RF, Hunkapiller WM, et al.: Simian sarcoma virus oncogene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221:275–277, 1983.

    Article  PubMed  CAS  Google Scholar 

  11. Chiu I-M, Reddy EP, et al.: Nucleotide sequence analysis identifies the human c-sis proto-oncogene as a structural gene for platelet-derived growth factor. Cell 37:123–129, 1984.

    Article  PubMed  CAS  Google Scholar 

  12. Gazit A, Igarashi H, et al.: Expression of the normal human sis/PDGF-2 coding sequence induces cellular transformation. Cell 39:89–97, 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Johnsson A, Betsholtz C, von der Helm K, Heldin C-H, Westermark B: Platelet-derived growth factor agonist activates a secreted form of the v-sis oncogene product. Proc Natl Acad Sci USA 82:1721–1725, 1985.

    Article  PubMed  CAS  Google Scholar 

  14. Heldin C-H, Hammacher A, Wister M, Westermark B: Structural and functional aspects of platelet-derived growth factor. Br J Cancer 57:591–593, 1988.

    Article  PubMed  CAS  Google Scholar 

  15. Yarden Y, Escobedo JA, et al.: Structure of the receptor from platelet-derived growth factor receptors. Nature 323:226–232, 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Ralston R, Bishop JM: The product of the proto-oncogene c-src is modified during the cellular response to PDGF. Proc Natl Acad Sci USA 82:7845–7849, 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Morrison DK, Kaplan DR, Rapp NJ, Roberts RM: Signal transduction from membrane to cytoplasm: Growth factors and membrane-bound oncogene products increase Raf-1 phosphorylation and associated protein kinase activity. Proc Natl Acad Sci USA, in press.

    Google Scholar 

  18. Greenberg ME, Ziff EM: Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311:433–438, 1984.

    Article  PubMed  CAS  Google Scholar 

  19. Kruijer W, Cooper JA, Hunter T, Verma IM: Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature 312:711–716, 1984.

    Article  PubMed  CAS  Google Scholar 

  20. Muller R, Bravo R, Burckhardt J, Curran T: Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature 312:716–720, 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Curran T, Miller AD, Zokas L, Verma IM: Viral and cellular fos proteins: a comparative analysis. Cell 36:259–268, 1984.

    Article  PubMed  CAS  Google Scholar 

  22. Kelly K, Cocharan BH, Stiles CD, Leder P: Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35:603–610, 1983.

    Article  PubMed  CAS  Google Scholar 

  23. Antoniades HN: Human platelet-derived growth factor (PDGF): purification of PDGF-I and PDGF-II and separation of their reduced subunits. Proc Natl Acad Sci USA 78:7314–7317, 1981.

    Article  PubMed  CAS  Google Scholar 

  24. Deule TF, Huang JS: Platelet-derived growth factor: purification, properties, and biological activities. Prog Hematol 13:201–221, 1983.

    Google Scholar 

  25. Heldin C-H, Westermark B, Wasteson A: Platelet-derived growth factor: purification and partial characterization. Proc Natl Acad Sci USA 76:3722–3726, 1979.

    Article  PubMed  CAS  Google Scholar 

  26. Raines E, Ross R: Platelet-derived growth factor: High yield purification and evidence for multiple forms. J Biol Chem 257:5154–5160, 1982.

    PubMed  CAS  Google Scholar 

  27. Heldin C-H, Johnsson A, et al.: A human osteosarcoma cell line secretes a growth factor structurally related to a homodimer of PDGF A-chains. Nature 319:511–514, 1986.

    Article  PubMed  CAS  Google Scholar 

  28. Heldin C-H, Westermark B, Wasteson A: Chemical and biological properties of a growth factor from human-cultured osteosarcoma cells: resemblance with platelet-derived growth factor. J Cell Physiol 105:235–246, 1980.

    Article  PubMed  CAS  Google Scholar 

  29. Betsholtz C, Johnson A, et al.: cDNA sequence and chromosomal localization of human platelet-derived growth factor A-chain and its expression in tumor cell lines. Nature 320: 695–699, 1986.

    Article  PubMed  CAS  Google Scholar 

  30. van Zoelen EJJ, van de Ven WJM, et al.: Neuroblastoma cells express c-sis and produce a transforming growth factor antigenically related to the platelet-derived growth factor. Mol Cell Biol 5:2289–2297, 1985.

    PubMed  Google Scholar 

  31. Martinet Y, Bitterman PB, et al.: Activated human monocytes express the c-sis proto-oncogene and release a mediator showing PDGF-like activity. Nature 319:158–160, 1986.

    Article  PubMed  CAS  Google Scholar 

  32. Niman HL, Houghten RA, Bown-Pope DF: Detection of high molecular weight forms of platelet-derived growth factor by sequence-specific antisera. Science 226:701–703, 1984.

    Article  PubMed  CAS  Google Scholar 

  33. Niman HL, Thompson AMH, et al.: Anti-peptide antibodies detect oncogene-related proteins in urine. Proc Natl Acad Sci USA 82:7924–7928, 1985.

    Article  PubMed  CAS  Google Scholar 

  34. Owen AJ, Pantazis P, Antoniades HN: Simian sarcoma virus-transformed cells secrete a mitogen identical to platelet-derived growth factor. Science 225:54–56, 1984.

    Article  PubMed  CAS  Google Scholar 

  35. Rizzino A, Bowen-Pope DE: Production of PDGF-like factors by embryonal carcinoma cells and response to PDGF by endoderm-like cells. Dev Biol 110:15–22, 1985.

    Article  PubMed  CAS  Google Scholar 

  36. Seifert RA, Schwartz SM, Bowen-Pope DE: Developmentally regulated production of platelet-derived growth factor-like molecules. Nature 311:669–671, 1984.

    Article  PubMed  CAS  Google Scholar 

  37. Shimokado K, Raines EW, et al.: A significant part of macrophage-derived growth factor consists of at least two forms of PDGF. Cell 43:277–286, 1985.

    Article  PubMed  CAS  Google Scholar 

  38. Walker LN, Bowen-Pope DF, Ross R, Reidy MA: Production of PDGF-like molecules by cultured arterial smooth muscle cells accompanies proliferation after arterial injury. Proc Natl Acad Sci USA 83:7311–7315, 1986.

    Article  PubMed  CAS  Google Scholar 

  39. Westin EH, Wong-Staal F, et al.: Expression of cellular homologues of retroviral oncogenes in human hematopoietic cells. Proc Natl Acad Sci USA 79:2490–2494, 1982.

    Article  PubMed  CAS  Google Scholar 

  40. Barrett TB, Gajdusek CM, Schwartz SM, McDougal JK Benditt EP: Expression of the sis gene by endothelial cells in culture and in vivo. Proc Natl Acad Sci USA 81:6772–6774, 1984.

    Article  PubMed  CAS  Google Scholar 

  41. Betsholtz C, Westermark B, Ek B, Heldin C-H: Coexpression of a PDGF-like factor and PDGF receptors in a human osteosarcoma cell line: Implications for autocrine receptor activation. Cell 39:447–457, 1984.

    Article  PubMed  CAS  Google Scholar 

  42. Bowen-Pope DF, Vogel A, Ross R: Production of platelet-derived growth factor-like mole-cules and reduced expression of platelet-derived growth factor receptors accompany transformation by a wide spectrum of agents. Proc Natl Acad Sci USA 81:2396–2400, 1984.

    Article  PubMed  CAS  Google Scholar 

  43. Collins T, Ginsburg D, Boss JM, Orkin SH, Pober JS: Cultured human endothelial cells express platelet-derived growth factor chain 2: cDNA cloning and structural analysis. Nature 316:748–750, 1985.

    Article  PubMed  CAS  Google Scholar 

  44. Dicorleto PE, Bowen-Pope DF: Cultured endothelial cells produce a platelet-derived growth factor-like protein. Proc Natl Acad Sci USA 80:1919–1923, 1983.

    Article  PubMed  CAS  Google Scholar 

  45. Fox PL, Dicorleto PE: Regulation of production of a platelet-derived growth factor-like protein by cultured bovine aortic endothelial cells. J Cell Physiol 121:298–308, 1984.

    Article  PubMed  CAS  Google Scholar 

  46. Goustin AS, Betsholtz C, et al.: Coexpression of the sis and myc proto-oncogenes in developing human placenta suggests autocrine control of trophoblast growth. Cell 41:301–312, 1985.

    Article  PubMed  CAS  Google Scholar 

  47. Graves DT, Owen AJ, et al.: Detection of c-sis transcripts and synthesis of PDGF-like proteins by human osteosarcoma cells. Science 226:972–974, 1984.

    Article  PubMed  CAS  Google Scholar 

  48. Slamon DJ, Cline MJ: Expression of cellular oncogenes during embryonic and fetal development of the mouse. Proc Natl Acad Sci USA 81:7141–7145, 1984.

    Article  PubMed  CAS  Google Scholar 

  49. Escobedo JA, Keating MT, Ives HE, Williams LT: Platelet-derived growth factor receptors expressed by cDNA transfection couple to a diverse group of cellular responses associated with cell proliferation. J Biol Chem 263:1482–1487, 1988.

    PubMed  CAS  Google Scholar 

  50. Escobedo JA, et al.: A common PDGF receptor is activated by homodimeric A and B forms of PDGF. Science 240:1532–1534, 1988.

    Article  PubMed  CAS  Google Scholar 

  51. Hart CE, et al.: Two classes of PDGF receptor recognize different isoforms of PDGF. Science 240:1529–1531, 1988.

    Article  PubMed  CAS  Google Scholar 

  52. Heldin C-H, et al.: Binding of different dimeric forms of PDGF to human fibroblasts: evidence for two separate receptor types. EMBO J 7:1387–1392, 1988.

    PubMed  CAS  Google Scholar 

  53. Bazen JF, Fletterick RJ, Escobedo JA, Williams LT: The PDGF receptor is a member of the immunoglobulin gene superfamily. In preparation.

    Google Scholar 

  54. Excobedo JA, Barr PJ, Williams LT: The role of the tyrosine kinase and membrane spanning domains in PDGF receptor signal transduction. Mol Cell Biol in press.

    Google Scholar 

  55. Keating MT, Escobedo JA, Williams LT: Ligand activation causes a phosphylation-dependent change in platelet-derived growth factor receptor conformation J Biol Chem 263:12805–12808, 1988.

    PubMed  CAS  Google Scholar 

  56. Escobedo JA, Williams LT: A PDGF receptor domain essential for mitogenesis but not for many other responses to PDGF. Nature 335:85–87, 1988.

    Article  PubMed  CAS  Google Scholar 

  57. Roberts WM, Loo AT, Rousse MF, Sherr CJ: Tandem linkage of human CSF-1 receptor (c-fms) and PDGF receptor genes. Cell 55:655–661, 1988.

    Article  PubMed  CAS  Google Scholar 

  58. Robbins KC, Leal F, Pierce JH, Aaronson SA: Biosynthetic pathway of the v-sis/PDGF-2 gene product in SSV-transformed cells. EMBO J 4:1783–1786, 1985.

    PubMed  CAS  Google Scholar 

  59. Garrett JSG, Coughlin SR, et al.: Blockage of autocrine stimulation in SSV-transformed cells reverses down regulation of PDGF receptors. Proc Natl Acad Sci USA 81:7466–7470, 1984.

    Article  PubMed  CAS  Google Scholar 

  60. Huang JS, Huang SS, Deuel TF: Transforming protein simian sarcoma virus stimulates autocrine growth of SSV-transformed cells through PDGF cell-surface receptors. Cell 39: 79–87, 1984.

    Article  PubMed  CAS  Google Scholar 

  61. Johnson A, Betsholtz C, Heldin C-H, Westermark B: Antibodies against platelet-derived growth factor inhibit acute transformation by simian sarcoma virus. Nature 317:438–440, 1985.

    Article  Google Scholar 

  62. Johnsson A, Bethsholtz C, von der Heim K, Heldin C-H. Westermark B: Platelet-derived growth factor agonist activity of a secreted form of the v-sis oncogene product. Proc Natl Acad Sci USA 82:1721–1725.

    Google Scholar 

  63. Leal F, Williams LT, Robbins KC, Aaronson SA? Evidence that the v-sis gene product transforms by interaction with the receptor for platelet-derived growth factor. Science 230:327–330, 1985.

    Article  PubMed  CAS  Google Scholar 

  64. Betsholtz C, Johnsson A, Helding C-H, Westermark B: Efficient reversion of simian sar-coma virus-transformation and inhibition of growth factor-induced mitogenesis by suramin. Proc Natl Acad Sci USA 83:6440–6444, 1986.

    Article  PubMed  CAS  Google Scholar 

  65. Donoghue DJ, Hannink M: Requirement for signal sequence in biological expression of the v-sis oncogene. Science 226:1197–1199, 1984.

    Article  PubMed  Google Scholar 

  66. Keating MT, Williams LT: Autocrine stimulation of intracellular PDGF receptors in v-sis-transformed cells. Science 239:914–916, 1988.

    Article  PubMed  CAS  Google Scholar 

  67. Huang SS, Huang JS: Rapid turnover of the platelet-derived growth factor receptor in sis-transformed cells and reversal by suramin. Implications for the mechanism of autocrine transformation. J Biol Chem 263:12608–12618, 1988.

    PubMed  CAS  Google Scholar 

  68. Johnsson A, Betsholtz C, Heldin C-H, Westermark B: The phenotypic characteristics of simian sarcoma virus-transformed human fibroblasts suggests that the v-sis gene product acts solely as a PDGF receptor agonist in cell transformation, EMBO J 5:1535–1541, 1986.

    PubMed  CAS  Google Scholar 

  69. Deinhardt F: Biology of primate retroviruses. In Klein G (ed): Viral Oncology. New York, Raven Press, 1980, pp 357–398.

    Google Scholar 

  70. Harsh GR, Rosenblum ML, Williams LT: Oncogene-related growth factors and growth factor receptors in human malignant glioma-derived cell lines. J Neuro-Oncol, in press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Coughlin, S.R., Keating, M.T. (1989). The platelet-derived growth factor system. In: Benz, C., Liu, E. (eds) Oncogenes. Cancer Treatment and Research, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1599-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1599-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8885-5

  • Online ISBN: 978-1-4613-1599-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics