Skip to main content

The myc family of nuclear proto-oncogenes

  • Chapter
Oncogenes

Part of the book series: Cancer Treatment and Research ((CTAR,volume 47))

Abstract

The myc family of genes is made up of several members that share common characteristics both at the DNA level and at the level of their protein product, c-myc, the senior member of this group of genes, is among the best studied of all cellular genes; N-myc, the next gene to be discovered, established the existence of genes closely resembling c-myc in the mammalian genome; L-myc, the third gene of the group to be described, confirmed some of the myc familial characteristics but also demonstrated some intriguing differences; and finally, B-myc has been described only recently and its characterization is incomplete. Reference has been made to the existence of yet other members of this family of genes, but no detailed descriptions have appeared thus far. In commonly used classifications of proto-oncogenes, the myc genes with demonstrated oncogenic potential (c-, N-, and L-myc) are grouped with the nuclear proto-oncogenes by virtue of the nuclear location of their protein products. Although two members, c-myc and N-myc, have been studied for many years, they remain among the most enigmatic of cellular genes, with functions and mechanisms of action that have yet to be elucidated. The effects of their proteins on cells have been described only in generic terms, and this poor understanding is at least partly due to our ignorance of the functional biochemical organization of the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vennstrom B, Sheiness D, Zabielski J, Bishop JM: Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J Virol 42:773–779, 1982.

    PubMed  CAS  Google Scholar 

  2. Watson DK, Reddy EP, Duesberg PH, Papas TS: Nucleotide sequence analysis of the chicken c-myc gene reveals homologous and unique coding regions by comparison with the transforming gene of avian myelocytomatosis virus MC29, δgag-myc. Proc Natl Acad Sci USA 80:2146–2150, 1983.

    PubMed  CAS  Google Scholar 

  3. Vennstrom B, Moscovici C, Goodman HM, Bishop JM: Molecular cloning of the avian myelocytomatosis virus genome and recovery of infectious virus by transfection of chicken cells. J Virol 39:625–631, 1981.

    PubMed  CAS  Google Scholar 

  4. Robins T, Bister K, Garon C, Papas T, Duesberg P: Structural relationship between a normal chicken DNA locus and the transforming gene of the avian acute leukemia virus MC29. J Virol 41:635–642, 1982.

    PubMed  CAS  Google Scholar 

  5. Alitalo K, Bishop JM, Smith DH, Chen EY, Colby WW, Levinson AD: Levinson Nucleotide sequence of the v-myc oncogene of avian retrovirus MC29. Proc Natl Acad Sci USA 80:100–104, 1983.

    PubMed  CAS  Google Scholar 

  6. Reddy EP, Reynolds RK, Watson DK, Schultz RA, Lautenberger J, Papas TS: Nucleotide sequence analysis of the proviral genome of avian myelocytomatosis virus (MC29). Proc Natl Acad Sci USA 80:2500–2504, 1983.

    PubMed  CAS  Google Scholar 

  7. Kan, NC, Flordellis CS, Garon CF, Duesberg PH, Papas TS: Avian carcinoma virus MH2 contains a transformation-specific sequence, mht, and shares the myc sequence with MC29, CMII and OK10 viruses. Proc Natl Acad Sci USA 80:6566–6570, 1983.

    PubMed  CAS  Google Scholar 

  8. Kan NC, Flordellis CS, Mark GE, Duesberg PH, Papas TS Nucleotide sequence of avian carcinoma virus MH2: two potential onc genes, one related to avian virus MC29 and the other related to murine sarcoma virus 3611. Proc Natl Acad Sci USA 81:3000–3004, 1984.

    PubMed  CAS  Google Scholar 

  9. Hayflick J, Seeburg PH, Ohlsson R, Pfeifer-Ohlsson S, Watson D, Papas T, Duesberg PH: Nucleotide sequence of two overlapping myc-related genes in avian carcinoma virus OK10 and their relationship to the myc genes of other viruses and the cell. Proc Natl Acad Sci USA 82:2718–2722, 1985.

    PubMed  CAS  Google Scholar 

  10. Walther N, Jansen HW, Trachmann C, Bister K: Nulceotide sequence of the,CMII v-myc allele. Virology 154:219–223, 1986.

    PubMed  CAS  Google Scholar 

  11. Graf T, Beug H: Avian leukemia viruses: interaction with their target cells in vivo and in vitro. Biochim Biophys Acta 516:269–299, 1978.

    PubMed  CAS  Google Scholar 

  12. Sheiness D, Bishop JM: DNA and RNA from uninfected vertebrate cells contain nucleotide sequences related to the putative transforming gene of avian myelocytomatosis virus. J Virol 31:514–521, 1979.

    PubMed  CAS  Google Scholar 

  13. Dalla-Favera R, Gelmann EP, Martinotti S, Franchini G, Papas TS, Gallo RC, Wong-Staal F: Cloning and characterization of different human sequences related to the onc gene (v-myc) of avian myelocytomatosis virus (MC29). Proc Natl Acad Sci USA 79:6497–6501, 1982.

    PubMed  CAS  Google Scholar 

  14. Colby WW, Chen EY, Smith DH, Levinson AD: Identification and nucleotide sequence of a human locus homologous to the v-myc oncogene of avian myelocytomatosis virus MC29. Nature (London) 301:722–725, 1983.

    CAS  Google Scholar 

  15. Watson DK, Psallidopoulos MC, Samuel KP, Dalla-Favera R, Papas TS: Nucleotide sequence analysis of human c-myc locus, chicken homologue, and myelocytomatosis virus MC29 transforming gene reveals a highly conserved gene product. Proc Natl Acad Sci USA 80:3642–3645, 1983.

    PubMed  CAS  Google Scholar 

  16. Stanton L, Fahrlander PD, Tesser PM, Marcu KB: Nucleotide sequence comparison of normal and translocated murine c-myc genes. Nature (London) 310:423–425, 1984.

    CAS  Google Scholar 

  17. Steffen D: Proviruses are adjacent to c-myc in some murine leukemia virus-induced lymphomas. Proc Natl Acad Sci USA 81:2097–2101, 1984.

    PubMed  CAS  Google Scholar 

  18. Hayashi K, Makino R, Kawamura H, Arisawal A, Yoneda K: (1987). Characterization of rat c-myc and adjacent regions. Nucleic Acids Res 15:6419–6436, 1987.

    Google Scholar 

  19. Neil JC, Hughes D, McFarlane R, Wilkie N, Onions DE, Lees G, Jarrett O: Transduction and rearrangement of the myc gene by feline leukaemia virus in naturally occurring T-cell leukaemias. Nature (London) 308:814–820, 1984.

    CAS  Google Scholar 

  20. Stewart MA, Forrest D, McFarlane R, Onions D, Wilkie N, Neil JC: Conservation of the c-myc coding sequence in transduced feline v-myc genes. Virology 154:121–134, 1986.

    PubMed  CAS  Google Scholar 

  21. Katzir N, Rechavi G, Cohen JB, Unger T, Simoni F, Segal S, Cohen D, Givol D: ‘Retroposon’ insertion into the cellular oncogene c-myc in canine transmissible venereal tumor. Proc Natl Acad Sci USA 82:1054–1058, 1985.

    PubMed  CAS  Google Scholar 

  22. King MW, Roberts JM, Eisenman RN: Expression of the c-myc proto-oncogene during development of Xenopus laevis. Mol Cell Biol 6:4499–4508, 1986.

    PubMed  CAS  Google Scholar 

  23. Taylor MV, Gusse M, Evan, GI, Dathan N, Mechali M: Xenopus myc proto-oncogene during development: expression as a stable maternai mRNA uncoupled from cell division. EMBO J 5:3563–3570, 1986.

    PubMed  CAS  Google Scholar 

  24. Godeau F, Persson H, Gray HE, Pradee AB: c-myc expression is dissociated from DNA synthesis and cell division in Xenopus oocyte and early embryonic development. EMBO J 5:3571–3577, 1986.

    PubMed  CAS  Google Scholar 

  25. Van Beneden RJ, Watson DK, Chen TT, Lautenberger JA, Papas TS: Cellular myc (c-myc) in fish (rainbow trout): Its relationship to other vertebrate myc genes and to the transforming genes of the MC29 family of viruses. Proc Natl Acad Sci USA 83:3698–3702, 1986.

    PubMed  Google Scholar 

  26. Watt R, Stanton LW, Marcu KB, Gallo RC, Croce CM Rovera G: Nucleotide sequence of cloned cDNA of human c-myc oncogene. Nature (London) 303:725–728, 1983.

    CAS  Google Scholar 

  27. Hamlyn PH, Rabbitts TH: Translocation joins c-myc and immunoglobulin γl genes in a Burkitt lymphoma revealing a third exon in the c-myc oncogene. Nature 304:135–139, 1983.

    PubMed  CAS  Google Scholar 

  28. Watt R, Nishikura K, Sorrentino J, ar-Rushdi A, Croce CM, Rovera G: The structure and nucleotide sequence of the 5′ end of the human c-myc oncogene. Proc Natl Acad Sci USA 80:6307–6311, 1983.

    PubMed  CAS  Google Scholar 

  29. Shih C-K, Linial M, Goodenow MM, Hayward WS: Nucleotide sequence 5′ of the chicken c-myc coding region: Localization of a noncoding exon that is absent from myc transcripts in most avian leukosis virus-induced lymphomas. Proc Natl Acad Sci USA 81:4697–4701, 1984.

    PubMed  CAS  Google Scholar 

  30. Hann SR, King MW, Bentley DL, Anderson CW, Eisenman RN: A non-AUG trans-lational initiation in c-myc exon 1 generates a N-terminally distinct whose synthesis is disrupted in Burkitt’s lymphomas. Cell 52:185–195, 1988.

    PubMed  CAS  Google Scholar 

  31. Battey J, Moulding C, Taub R, Murphy W, Stewart T, Potter H, Lenoir G, Leder P: The human c-myc oncogene: Structural consequences of translocation into the IgH locus in Burkitt lymphoma. Cell 34:779–787, 1983.

    PubMed  CAS  Google Scholar 

  32. Bentley DL, Groudine M: Novel promoter upstream of the human c-myc gene and regulation of c-myc expression in B-cell lymphomas. Mol Cell Biol 6:3481–3489, 1986.

    PubMed  CAS  Google Scholar 

  33. Ray D, Meneceur P, Tavitian A, Robert-Lezenes J: Presence of a c-myc transcript initiated in intron 1 in Friend erythroleukemia cells and in other murine cell types with no evidence of c-myc gene rearrangement. Mol Cell Biol 7:940–945, 1987.

    PubMed  CAS  Google Scholar 

  34. Bentley DL, Groudine M: A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. Nature (London) 321:702–706, 1986.

    CAS  Google Scholar 

  35. Gazin C, de Dinechin SD, Hampe A, Masson J-M, Martin P, Stehelin D, Galibert F: Nucleotide sequence of the human c-myc locus: provocative open reading frame within the first exon. EMBO J 3:383–387, 1984.

    PubMed  CAS  Google Scholar 

  36. Gazin C, Rigolet M, Briand JP, Van Regenmortel MHV, Galibert F: Immunochemical detection of proteins related to the human c-myc exon 1. EMBO J 5:2241–2250, 1986.

    PubMed  CAS  Google Scholar 

  37. Remmers EF, Yang J-Q, Marcu KB: A negative transcriptional control element located upstream of the murine c-myc gene. EMBO J 5:899–904, 1986.

    PubMed  CAS  Google Scholar 

  38. Yang J-Q, Remmers EF, Marcu KB: The first exon of the c-myc proto-oncogene contains a novel positive control element. EMBO J 5:3553–3562, 1986.

    PubMed  CAS  Google Scholar 

  39. Lipp M, Schilling R, Wiest S, Laux G, Bornkamm G: Target sequences for cis-acting regulation within the dual promoter of the human c-myc gene. Mol Cell Biol 7:1393–1400, 1987.

    PubMed  CAS  Google Scholar 

  40. Hay N, Bishop JM, Levens D: Regulatory elements that modulate expression of human c-myc. Genes Devel 1:659–671, 1987.

    PubMed  CAS  Google Scholar 

  41. Greenberg ME, Ziff EB: Stimulation of 3T3 cells induces transcription of the c-fos proto-oencogene. Nature (London) 311:433–438, 1984.

    CAS  Google Scholar 

  42. Dean M, Levine RA, Ran W, Kindy MS, Sonenshein GE, Campisi J: Regulation of c-myc transcription and mRNA abundance by serum growth factors and cell contact. J Biol Chem 261:9161–9166, 1986.

    PubMed  CAS  Google Scholar 

  43. Levine RA, McCormack JE, Buckler A, Sonenshein GE, Transcriptional and post-transcriptional control of c-myc gene expression in WEHI 231 cells. Mol Cell Biol 6:4112–4116, 1986.

    PubMed  CAS  Google Scholar 

  44. Mechti N, Piechaczyk M, Blanchard J-M, Marty L, Bonnieu A, Jeanteur P, Lebleu B: Transcriptional and post-transcriptional regulation of c-myc expression during the differentiation of murine erythroleukemia Friend cells. Nucleic Acids Res 14:9653–9666, 1986.

    PubMed  CAS  Google Scholar 

  45. Chung J, Sussman DJ, Zeller R, Leder P: The c-myc gene encodes superimposed RNA polymerases II and III promoters. Cell 51:1001–1008, 1987.

    PubMed  CAS  Google Scholar 

  46. Eick D, Bornkamm GW: Transcriptional arrest within the first exon is a fast control mechanism in c-myc gene expression. Nucleic Acids Res 14:8331–8346, 1987.

    Google Scholar 

  47. Nepveu A, Marcu KB: Intragenic pausing and anti-sense transcription within the murine c-myc locus. EMBO J 5:2859–2865, 1986.

    PubMed  CAS  Google Scholar 

  48. Kindy MS, McCormack JE, Buckler AJ, Levine RA, Sonenshein GE: Independent regulation of transcription of the two strands of the c-myc gene. Mol Cell Biol 7:2857–2862, 1987.

    PubMed  CAS  Google Scholar 

  49. Reitsma PH, Rothberg PG, Astrin SM, Trial J, Bar-Shavit Z, Hall A, Teitelbaum SL, Kahn AJ: Regulation of myc gene expression in HL-60 leukemia cells by a vitamin D metabolite. Nature (London) 306:492–494, 1983.

    CAS  Google Scholar 

  50. Grosso LE, Pitot HC: Transcriptional regulation of c-myc during chemically induced differentiation of HL60 cultures. Cancer Res 45:847–850, 1985.

    PubMed  CAS  Google Scholar 

  51. Cesarman E, Dalla-Favera R, Bentley D, Groudine M: Mutations in the first exon are associated with altered transcription of c-myc in Burkitt’s lymphoma. Science 238:1272–1275, 1987.

    PubMed  CAS  Google Scholar 

  52. Krystal G, Birrer M, Way J, Nau M, Sausville E, Thompson C, Minna J, Battey J: Multiple mechanisms for transcriptional regulation of the myc gene family in small-cell lung cancer. Mol Cell Biol 8:3373–3381, 1988.

    PubMed  CAS  Google Scholar 

  53. Bentley DL, Groudine M: Sequence requirements for premature termination of transcription in the human c-myc gene. Cell 53:245–256, 1988.

    PubMed  CAS  Google Scholar 

  54. Kerppola TK, Kane CM: Intrinsic sites of transcription termination and pausing in the c-myc gene. Mol Cell Biol 8:4389–4394, 1988.

    PubMed  CAS  Google Scholar 

  55. Siebenlist U, Bressler P, Kelly K: Two distinct mechanisms of transcriptional control operate on c-myc during differentation of HL60 cells. Mol Cell Biol 8:867–874, 1988.

    PubMed  CAS  Google Scholar 

  56. Dani C, Blanchard JM, Piechaczyk M, El Sabouty S, Marty L, Jeanteur P: Extreme instability of myc mRNA in normal and transformed human cells. Proc Natl Acad Sci USA 81:7046–7050.

    Google Scholar 

  57. Jones TR, Cole MD: Rapid cytoplasmic turnover of c-myc mRNA: Requirement of the 3′ untranslated sequences. Mol Cell Biol 7:4513–4521, 1987.

    PubMed  CAS  Google Scholar 

  58. Piechaczyk M, Yang J-Q, Blanchard J-M, Jeanteur P, Marcu KB: Posttranscriptional mechanisms are responsible for accumulation of truncated c-myc RNAs in murine plasma cell tumors. Cell 42:589–597, 1985.

    PubMed  CAS  Google Scholar 

  59. Eick D, Piechaczyk M, Henglein B, Blanchard J-M, Traub B, Kofler E, Wiest S, Lenoir GM, Bornkamm GW: Aberrant c-raye mRNAs of Burkitt’s lymphoma have longer half-lives. EMBO J 4:3717–3725, 1985.

    PubMed  CAS  Google Scholar 

  60. Rabbitts PH, Forster A, Stinson MA, Rabbitts TH: Truncation of exon 1 from the c-myc gene results in prolonged c-myc mRNA stability. EMBO J 4:3727–3733, 1985.

    PubMed  CAS  Google Scholar 

  61. Shaw G, Kamen R: A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667, 1986.

    PubMed  CAS  Google Scholar 

  62. Swartwout SG, Preisler H, Guan W, Kinniburgh AJ: Relatively stable population of c-myc RNA that lacks long poly(A). Mol Cell Biol 7:2052–2058, 1987.

    PubMed  CAS  Google Scholar 

  63. Blanchard J-M, Piechaczyk M, Dani C, Chambard J-C, Franchi A, Pouyssegur J, Jeanteur P: c-myc is transcribed at high rate in G0-arrested fibroblasts and is post-transcriptionally regulated in response to growth factors. Nature (London) 317:443–445, 1985.

    CAS  Google Scholar 

  64. Knight E Jr, Anton ED, Fahey D, Friedland BK, Jonak GJ: Interferon regulates c-myc gene expression in Daudi cells at the post-transcriptional level. Proc Natl Acad Sci USA 82:1151–1154, 1985.

    PubMed  CAS  Google Scholar 

  65. Dani C, Mechti N, Piechaczyk M, Lebleu B, Jeanteur P, Blanchard J-M: Increased rate of degradation of c-myc mRNA in interferon-treated Daudi cells. Proc Natl Acad Sci USA 82:4896–4899, 1985.

    PubMed  CAS  Google Scholar 

  66. Dony C, Kessel M, Gruss P: Post-transcriptional control of myc and p53 expression during differentiation of the embryonal carcinoma cell line F9. Nature (London) 317:637–639, 1985.

    Google Scholar 

  67. Dean M, Levine RA, Campisi J: c-myc regulation during retinoci acid-induced differentiation of F9 cells is post-transcriptional and associated with growth arrest. Mol Cell Biol 6:518–524, 1986.

    PubMed  CAS  Google Scholar 

  68. Saito H, Hayday AC, Wiman K, Hayward WS, Tonegawa S: Activation of the c-myc gene by translocation: a model for translational control. Proc Natl Acad Sci USA 80:7476–7480, 1983.

    PubMed  CAS  Google Scholar 

  69. Darveau A, Pelletier J, Sonenberg N: Differential efficiencies of in vitro translation of mouse c-myc transcripts differing in the 5′ untranslated region. Proc Natl Acad Sci USA 82:2315–2319, 1985.

    PubMed  CAS  Google Scholar 

  70. Nilsen TW, Maroney PA: Translational efficiency of cMyc mRNA in Burkitt lymphoma cells. Mol Cell Biol 4:2235–2238, 1984.

    PubMed  CAS  Google Scholar 

  71. Butnick NZ, Miyamoto C, Chizzonite R, Cullen BR, Ju G, Skalka AM: Regulation of the human c-myc gene: 5′ noncoding sequences do not affect translation. Mol Cell Biol 5: 3009–3016, 1985.

    PubMed  CAS  Google Scholar 

  72. Hann SR, Abrams HD, Rorschneider LR, Eisenman RN: Proteins encoded by the v-myc and c-myc oncogenes: identification and localization in acute leukemia virus transformants and bursal lymphoma cell line. Cell 34:789–798, 1983.

    PubMed  CAS  Google Scholar 

  73. Hann SR, Eisenman RN: Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Mol Cell Biol 4:2486–2497, 1984.

    PubMed  CAS  Google Scholar 

  74. Ramsay G, Evan GI, Bishop JM: The protein encoded by the human proto-oncogene c-myc. Proc Natl Acad Sci USA 81:7742–7746, 1984.

    PubMed  CAS  Google Scholar 

  75. Alitalo K, Ramsay G, Bishop JM, Ohlsson S, Colby WW, Levinson AD: Identification of nuclear proteins encoded by viral and cellular myc oncogenes. Nature 306:274–277, 1983.

    PubMed  CAS  Google Scholar 

  76. Persson H, Leder P: Nuclear localisation and DNA binding properties of a protein expressed by human c-myc oncogene. Science 225:718–720, 1984.

    PubMed  CAS  Google Scholar 

  77. Watt RA, Schatzman AM, Rosenberg M: Expression and characterization of the human c-myc DNA-binding protein. Mol Cell Biol 5:448–456, 1985.

    PubMed  CAS  Google Scholar 

  78. Spector DL, Watt RA, Sullivan NF: The v- and c-myc oncogene proteins co-localize in situ with small nuclear ribonucleoprotein particles. Oncogene 1:5–12, 1987.

    PubMed  CAS  Google Scholar 

  79. Eisenman, RN, Tachibana CY, Abrams HD, Hann SR: v-myc and c-myc encoded proteins are associated with the nuclear matrix. Mol Cell Biol 4:114–126, 1985.

    Google Scholar 

  80. Evan GI, Hancock DC: Studies on the interaction of the human c-myc protein with cell nuclei: p62c-myc as a member of a discrete subset of nuclear proteins. Cell 43:253–261,1985.

    PubMed  CAS  Google Scholar 

  81. Dang CV, McGuire MA, Buckmire M, Lee WMF: Involvement of the ‘leucine zipper’ region in the oligomerization and transforming activity of human c-myc protein. Nature (London) 337:664–666, 1989.

    CAS  Google Scholar 

  82. Bader JP, Ray DA: MC29 virus-coded protein occurs as monomers and dimers in transformed cells. J Virol 53:509–514, 1985.

    PubMed  CAS  Google Scholar 

  83. Sarid J, Halazonetis TD, Murphy W, Leder P: Evolutionary conserved regions of the human c-myc protein can be uncoupled from transforming activity. Proc Natl Acad Sci USA 84:170–173, 1987.

    PubMed  CAS  Google Scholar 

  84. Stone J, de Lange T, Ramsay G, Jokobovits E, Bishop JM, Vermus HE, Lee WMF: Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol Cell Biol 7:1697–1709, 1987.

    PubMed  CAS  Google Scholar 

  85. Dang CV, Lee WMF: Identification of the human c-myc protein nuclear translocation signal. Mol Cell Biol 8:4048–4054, 1988.

    PubMed  CAS  Google Scholar 

  86. Hayward WS, Neel BG, Astrin SM: ALV-induced lymphoid leukosis: activation of a cellular onc gene by promoter insertion. Nature (London) 290:475–480, 1981.

    CAS  Google Scholar 

  87. Payne GS, Bishop JM, Varmus HE: Mutliple arrangements of viral DNA and an activated host oncogene (c-myc) in bursal lymphomas. Nature (London) 295:209–214, 1982.

    CAS  Google Scholar 

  88. Fung YKT, Fadly AM, Crittenden LB, Kung H-J: On the mechanism of retrovirus-induced avian lymphoid leukosis: deletion and integration of the pro virus. Proc Natl Acad Sci USA 78:3418–3422, 1981.

    PubMed  CAS  Google Scholar 

  89. Robinson HL, Gagnon GC: Patterns of proviral insertion and deletion in avian leukosis virus-induced lymphomas. Mol Cell Biol 6:28–36, 1986.

    Google Scholar 

  90. Linial M, Groudine M: Transcription of three c-myc clones is enhanced in chicken bursal lymphoma cell lines. Proc Natl Acad Sci USA 82:53–57, 1985.

    PubMed  CAS  Google Scholar 

  91. Li Y, Holland CA, Hartley JW, Hopkins N: Viral integrations near c-myc in 10–20% of MCF247-induced AKR lymphomas. Proc Natl Acad Sci USA 81:6808–6811, 1984.

    PubMed  CAS  Google Scholar 

  92. Corcoran LM, Adams JM, Dunn AR, Cory S: Murine T lymphomas in which the cellular myc oncogene has been activated by retroviral insertion. Cell 37:113–122, 1984.

    PubMed  CAS  Google Scholar 

  93. Steffen D: proviruses are adjacent to c-myc in some murine leukemia virus-induced lymphomas. Proc Natl Acad Sci USA 81:2097–2101, 1984.

    PubMed  CAS  Google Scholar 

  94. Selten G, Cuypers HT, Zijlstra M, Melief C, Berns A: Involvement of c-myc in MuLV-induced T cell lymphomas in mice: frequency and mechanism of activation. EMBO J 3:3215–3222, 1984.

    PubMed  CAS  Google Scholar 

  95. Klein G: The role of gene dosage and genetic transpositions in carcinogenesis. Nature (London) 294:313–318, 1981.

    CAS  Google Scholar 

  96. Shen-Ong GLC, Keath EJ, Piccoli SP, Cole MD: Novel myc oncogene RNA from abortive immunoglobulin-gene recombination in mouse plasmacytomas. Cell 31:443–452, 1982.

    PubMed  CAS  Google Scholar 

  97. Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, Aaronson S, Leder P: Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 79:7837–7841, 1982.

    PubMed  CAS  Google Scholar 

  98. Crews S, Barth R, Hood L, Prehn J, Calame K: Mouse c-myc oncogene is located on chrombosome 15 and translocated to chromosome 12 in plasmacytomas. Science 218:1319–1321, 1982.

    PubMed  CAS  Google Scholar 

  99. Marcu KB, Harris LJ, Stanton LW, Erikson J, Watt R, Croce CM: Transcriptionally active c-myc oncogene is contained within NI ARD, a DNA sequence associated with chromosome translocations in B cell neoplasia. Proc Natl Acad Sci USA 80:519–524, 1983.

    PubMed  CAS  Google Scholar 

  100. Erikson J, ar-Rushdi A, Drwing HL, Nowell PC, Croce CM: Transcriptional activation of the translocated c-myc oncogene in Burkitt lymphoma. Proc Natl Acad Sci USA 80: 820–824, 1983.

    PubMed  CAS  Google Scholar 

  101. Adams J, Gerondakis S, Webb E, Corcoran LM, Cory S: Cellular myc oncogene is altered by chromosome translocation to the immunoglobulin locus in murine plasmacytomas and is rearranged similarly in human Burkitt lymphoma. Proc Natl Acad Sci USA 80:1982–1986, 1983.

    PubMed  CAS  Google Scholar 

  102. Erikson J, Miller DA, Miller OJ, Abcarian PW, Skurla RM, Mushinski JF, Croce CM: The c-myc oncogene is translocated to the involved chromosome 12 in mouse plasmacytoma. Proc Natl Acad Sci USA 82:4212–4216, 1985.

    PubMed  CAS  Google Scholar 

  103. Erikson J, Nishikura K, ar-Rushdi A, Finan J, Emanuel B, Lenoir G, Nowell PC, Croce CM: Translocation of an immunoglobulin ϰ locus to a region 3′ of an unrearranged c-myc oncogene enhances c-myc transcription. Proc Natl Acad Sci USA 80:7581–7585, 1983.

    PubMed  CAS  Google Scholar 

  104. Croce CM, Thierfelder W, Erikson J, Nishikura K, Finan J, Lenoir GM, Nowell PC: Transcriptional activation of an unrearranged and untranslocated c-myc oncogene by translocation of a Cλ locus in Burkitt lymphoma cells. Proc Natl Acad Sci USA 80:6922–6926, 1983.

    PubMed  CAS  Google Scholar 

  105. Davis M, Malcolm S, Rabbitts TH: Chromosome translocation can occur on either side of the c-myc oncogene in Burkitt lymphoma cells. Nature 308:286–288, 1984.

    PubMed  CAS  Google Scholar 

  106. Hollis GF, Mitchell KF, Battey J, Potter H, Taub RA, Lenoir G, Leder P: A variant translocation places the λ immunoglobulin genes 3′ to the c-myc oncogene in Burkitt lymphoma. Nature 307:752–755, 1984.

    PubMed  CAS  Google Scholar 

  107. Taub R, Moulding C, Battey J, Latt S, Lenoir GM, Tantravahi U, Tu Z, Leder P: A novel alteration in the structure of an activated c-myc gene in a variant t(2;8) Burkitt lymphoma. Cell 37:511–520, 1984.

    PubMed  CAS  Google Scholar 

  108. Graham M, Adams JM: Chromosome 8 breakpoint far 3′ of the c-myc oncogene in a Burkitt’s lymphoma 2;8 variant translocation is equivalent to the murine pvt-1 locus. EMBO J 5:2845–2851, 1986.

    PubMed  CAS  Google Scholar 

  109. Webb E, Adams JM Cory S: Variant (6;15) translocation in a murine plasmacytoma occurs near an immunoglobulin ϰ gene but far from the myc oncogene. Nature 312:777–779, 1984.

    PubMed  CAS  Google Scholar 

  110. Cory S, Graham M, Webb E, Corcoran L, Adams JM: Variant (6;15) translocations in murine plasmacytomas involve a chromosome 15 locus at least 72 kb from the c-myc oncogene. EMBO J4:675–681, 1985.

    Google Scholar 

  111. Banerjee, Wiener F, Spira J, Babonits M, Nilsson M-G, Sumegi J, Klein G: Mapping of the c-myc, pvt-1 and immunoglobulin kappa genes in relation to the mouse plasmacytoma-associated variant (6;15) translocation breakpoint. EMBO J 4:3183–3188, 1985.

    PubMed  CAS  Google Scholar 

  112. Nishikura K, ar-Rushdi A, Erikson J, Watt R, Rovera G, Croce CM: Differential expression of the normal and of the translocated human c-myc oncogenes in B cells. Proc Natl Acad Sci USA 80:4822–4826, 1983.

    PubMed  CAS  Google Scholar 

  113. ar-Rushdi A, Nishikura K, Erikson J, Watt R, Rovera G, Croce CM: Differential expression of the translocated and the untranslocated c-myc oncogenes in Burkitt lymphoma. Science 222:390–393, 1983.

    PubMed  CAS  Google Scholar 

  114. Hayday AC, Gillies SD, Saito H, Wood C, Wiman K, Hayward WS, Tonegawa S: Activation of a translocated human c-myc gene by an enhancer in the immunoglobulin heavy-chain locus. Nature (London) 307:334–340, 1984.

    CAS  Google Scholar 

  115. Corcoran LM, Cory S, Adams JM: Transposition of the immunoglobulin heavy chain enhancer to the myc oncogene in a murine plasmacytoma. Cell 40:71–79, 1985.

    PubMed  CAS  Google Scholar 

  116. Keath EJ, Kelekar A, Cole MD: Transcriptional activation of the translocated c-myc oncogene in mouse plasmacytomas: similar RNA levels in tumor and proliferating normal cells. Cell 37:521–528, 1984.

    PubMed  CAS  Google Scholar 

  117. Rabbits TH, Forster A, Baer R, Hamlyn PH: Transcription enhancer identified near the human Cµ immunoglobulin heavy chain gene is unavailable to the translocated c-myc gene in a Burkitt lymphoma. Nature (London) 306:806–809, 1983.

    Google Scholar 

  118. Leder P, Battey J, Lenoir G, Moulding C, Murphy W: Translocations among the antibody genes in human cancer. Science 222:765–771, 1983.

    PubMed  CAS  Google Scholar 

  119. Cory S, Gerondakis S, Adams JM: Interchromosomal recombination of the cellular oncogene c-myc with the immunoglobulin heavy chain locus in murine plasmacytomas is a reciprocal exchange. EMBO J 2:697–704, 1983.

    PubMed  CAS  Google Scholar 

  120. Pelicci P-G, Knowles DM II, Magrath I, Dalla-Favera R: Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc Natl Acad Sci USA 83:2984–2988, 1986.

    PubMed  CAS  Google Scholar 

  121. Yang J-Q, Rauer SR, Mushinski JF, Marcu KB: Chromosomal translocations clustered 5′ of the murine c-myc gene qualitatively affect promoter usage: implications for the site of normal c-myc regulation. EMBO J 4:1441–1447, 1985.

    PubMed  CAS  Google Scholar 

  122. Calabi F, Neuberger MS: Chromosome translocation activates heterogeneously initiated, bipolar transcription of a mouse c-myc gene. EMBO J 4:667–674, 1985.

    PubMed  CAS  Google Scholar 

  123. Prehn J, Mercola M, Calame K: Translocation affects normal c-myc promoter usage and activates fifteen cryptic c-myc transcription starts in M603. Nucleic Acids Res 12:8987–9007, 1984.

    PubMed  CAS  Google Scholar 

  124. Rabbitts TH, Hamlyn PH, Baer R: Altered nucleotide sequences of a translocated c-myc gene in Burkitt lumphoma. Nature 306:760–765, 1983.

    PubMed  CAS  Google Scholar 

  125. Showe LC, Ballantine M, Nishikura K, Erikson J, Kaji H, Croce CM: Cloning and sequencing of a c-myc oncogene in a Burkitt’s lymphoma cell line that is translocated to a germ line alpha switch region. Mol Cell Biol 5:501–509, 1985.

    PubMed  CAS  Google Scholar 

  126. Rabbitts TH, Forster A, Hamlyn PH, Baer R: Effect of somatic mutations within translocated c-myc genes in Burkitt lymphoma. Nature 309:592–597, 1984.

    PubMed  CAS  Google Scholar 

  127. Taub R, Moulding C, Battey J, Murphy W, Vasicek T, Leder P: Activation and somatic mutation of the translocated c-myc gene in Burkitt lymphoma cells. Cell 36:339–348, 1984.

    PubMed  CAS  Google Scholar 

  128. Sumegi J, Spira J, Bazin H, Szpirer J, Levan G, Klein G: Rat c-myc oncogene is located on chromosome 7 and rearranges in immunocytomas with a t(6;7) translocation. Nature (London) 306:497–499, 1983.

    CAS  Google Scholar 

  129. Pear WS, Wahlstrom G, Nelson SF, Axelson H, Szeles A, Wiener F, Bazin H, Klein G, Sumegi J: 6;7 translocation in spontaneously arising rat immunocytomas: Evidence for c-myc breakpoint clustering and correlation between isotypic expression and the c-myc target. Mol Cell Biol 8:441–451, 1988.

    PubMed  CAS  Google Scholar 

  130. Shima EA, Le Beau MM, McKeithan TW, Minowada J, Showe LC, Mak TW, Minden MD, Rowley JD, Diaz MO: Gene encoding the a chain of the T-cell receptor is moved immediately downstream of c-myc in a chromosomal 8; 14 translocation in a cell line from a human T-cell leukemia. Proc Natl Acad Sci USA 83:3439–3443, 1986.

    PubMed  CAS  Google Scholar 

  131. Erikson J, Finger L, Sun L, ar-Rushdi A, Nishikura K, Minowada J, Finan J, Emanuel BS, Nowell PC, Croce CM: Deregulation of c-myc by translocation of the α-locus of the T-cell receptor in T-cell leukemias. Science 232:884–886, 1986.

    PubMed  CAS  Google Scholar 

  132. McKeithan TW, Shima EA, Le Beau MM, Minowada J, Rowley JD, Diaz MO: Molecular cloning of the breakpoint junction of a human chromosomal 8; 14 translocation involving the T-cell receptor α chain gene and sequences on the 3′ side of MYC. Proc Natl Acad Sci USA 83:6636–6640, 1986.

    PubMed  CAS  Google Scholar 

  133. Drabkin HA, Bradley C, Hart I, Bleskan J, Li FP, Patterson D: Translocation of c-myc in the hereditary renal cell carcinoma associated with a t(3;8) (pl4.2;q24.13) chromosomal translocation. Proc Natl Acad Sci USA 82:6980–6984, 1985.

    PubMed  CAS  Google Scholar 

  134. Collins S, Groudine M: Amplification of endogenous myc related DNA sequences in human myeloid leukaemia cell line. Nature (London) 298:679–681, 1982.

    CAS  Google Scholar 

  135. Dalla-Favera R, Wong-Staal F, Gallo RC: onc Gene amplification in promyelocytic leukaemia cell line HL60 and primary leukaemic cells in the same patient. Nature (London) 299:61–63, 1982.

    CAS  Google Scholar 

  136. Alitalo K, Schwab M, Lin CC, Varmus HE, Bishop JM: Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci USA 80:1707–1711, 1983.

    PubMed  CAS  Google Scholar 

  137. Schwab M, Ramsay G, Alitalo K, Varmus HE, Bishop JM, Martinsson T, Levan G, Levan A: Amplification and enhanced expression of the c-myc oncogene in mouse SEW A tumour cells. Nature (London) 315:345–347, 1985.

    CAS  Google Scholar 

  138. Yokota J, Tsunetsugu-Yokota Y, Battifora H, LeFevre C, Cline MJ: Alterations of myc, myb and ras Ha proto-oncogenes in cancers are frequent and show clinical correlation. Science 231:261–264, 1986.

    PubMed  CAS  Google Scholar 

  139. Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD: Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306:194–196, 1983.

    PubMed  CAS  Google Scholar 

  140. Land H, Parada LF, Weinberg RA: Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature (London) 304:596–602, 1983.

    CAS  Google Scholar 

  141. Lee WMF, Schwab M, Westaway D, Varmus HE: Augmented expression of normal c-myc is sufficient for cotransformation of rat embryo cells with a mutant ras gene. Mol Cell Biol 5:3345–3356, 1985.

    PubMed  CAS  Google Scholar 

  142. Lombardi L, Mewcomb EW, Dalla-Favera R: Pathogenesis of Burkitt lymphoma: expression of an activated c-myc oncogene causes the tumorigenic conversion of EBV-infected human B-lymphocytes. Cell 49:161–170, 1987.

    PubMed  CAS  Google Scholar 

  143. Stewart TA, Pattengale PK, Leder P: Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38:627–637, 1984.

    PubMed  CAS  Google Scholar 

  144. Leder A, Pattengale PK, Kuo A, Stewart TA, Leder P: Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasms and normal development. Cell 45:485–495, 1986.

    PubMed  CAS  Google Scholar 

  145. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, Palmiter RD, Brinster RL: The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancies in transgenic mice. Nature (London) 318:533–538, 1985.

    CAS  Google Scholar 

  146. Langdon WY, Harris AW, Cory S, Adams JM: The c-myc oncogene perturbs B lymphocyte development in Eµ-myc transgenic mice. Cell 47:11–18, 1986.

    PubMed  CAS  Google Scholar 

  147. Suda Y, Aizawa S, Hirai S, Inoue T, Furuta Y, Suzuki M, Hirohashi S, Ikawa Y: Driven by the same Ig enhancer and SV40 T promoter ras induced lung adenomatous tumors, myc induced pre-B cell lymphomas and SV40 large T gene a variety of tumors in transgenic mice. EMBO J 6:4055–4065, 1987.

    PubMed  CAS  Google Scholar 

  148. Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P: Coexpression of MMTV/ v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49:465–475, 1987.

    PubMed  CAS  Google Scholar 

  149. Mougneau E, Lemieux L, Rassoulzadegan M, Cuzin F: Biological activities of v-myc and rearranged c-myc oncogenes in rat fibroblast cells in culture. Proc Natl Acad Sci USA 81:5758–5762, 1984.

    PubMed  CAS  Google Scholar 

  150. Bartlett PF, Reid HH, Bailey KA, Bernard O: Immortalization of mouse neural precursor cells by the c-myc oncogene. Proc Natl Acad Sci USA 85:3255–3259, 1988.

    PubMed  CAS  Google Scholar 

  151. Keath EJ, Caimi PG, Cole MD: Fibroblast lines expressing activated c-myc oncogenes are tumorigenic in nude mice and syngeneic animals. Cell 39:339–348, 1984.

    PubMed  CAS  Google Scholar 

  152. Lavialle C, Modjtahedi N, Cassingena R, Brison O: High c-myc amplification level contributes to the tumorigenic phenotype of the human breast carcinoma cell line SW 613-S. Oncogene 3:335–339, 1988.

    PubMed  CAS  Google Scholar 

  153. Martinsson T, Stahl F, Pollwein P, Wenzel A, Levan A, Schwab M, Levan G: Tumorigenicity of SEW A murine cells correlates with degree of c-myc amplification. Oncogene 3:437–441, 1988.

    PubMed  CAS  Google Scholar 

  154. Hahn M, Hayward WS: Absence of missense mutations in activated c-myc genes in avian leukosis virus-induced B-cell lymphomas. Mol Cell Biol 8:2659–2663, 1988.

    PubMed  CAS  Google Scholar 

  155. Westaway D, Pain G, Varmus HE: Proviral deletions and oncogene base-substitutions in insetionally mutagenized c-myc alleles may contribute to the progression of avian bursal tumors. Proc Natl Acad Sci USA 81:843–847, 1984.

    PubMed  CAS  Google Scholar 

  156. Papas TS, Leutenberger JA: Sequence curiosity in v-myc oncogene. Nature (London) 318:237, 1985.

    CAS  Google Scholar 

  157. Frykberg L, Graf T, Vennstrom B: The transforming activity of the chicken c-myc gene can be potentiated by mutations. Oncogene 1:415–421, 1987.

    PubMed  CAS  Google Scholar 

  158. Kelly K, Cochran BH, Stiles CD, Leder P: Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35:603–610, 1983.

    PubMed  CAS  Google Scholar 

  159. Lacy J, Sarkar SN, Summers WC: Induction of c-myc expression in human B lymphocytes by B-cell growth factor and anti-immunoglobulin. Proc Natl Acad Sci USA 83:1458–1462, 1986.

    PubMed  CAS  Google Scholar 

  160. Conscience J-F, Verrier B, Martin G: Interleukin-3-dependent expression of the c-myc and c-fos proto-oncogenes in hematopoietic cell lines. EMBO J 5:317–323, 1986.

    PubMed  CAS  Google Scholar 

  161. Makino R, Hayashi K, Sugimura T: c-myc transcript is induced in rat liver at a very early stage of regeneration or by cycloheximide treatment. Nature (London) 310:697–698, 1984.

    CAS  Google Scholar 

  162. Muller R, Bravo R, Burckhardt J, Curran T: Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature (London) 312:716–720, 1984.

    CAS  Google Scholar 

  163. Armelin HA, Armelin MCS, Kelly K, Stewart T, Leder P, Cochran BH, Stiles CD: Functional role for c-myc in mitogenic response to platelet-derived growth factor. Nature (London) 310:655–660, 1984.

    CAS  Google Scholar 

  164. Kaczmarek, Hyland JK, Watt R, Rosenberg M, Baserga R: Microinjected c-myc as a competence factor. Science 228:1313–1314, 1985.

    PubMed  CAS  Google Scholar 

  165. Heikkila R, Schwab G, Wickstrom E, Loke SL, Pluznik DH, Watt R, Neckers LM: A c-myc antisense oligodeoxynucleotide inhibits entry into S phase but not progress from G0 to G1. Nature (London) 328:445–449, 1987.

    CAS  Google Scholar 

  166. Thompson CB, Challoner PB, Neiman PE, Groudine M: Levels of c-myc oncogene mRNA are invariant throughout the cell cycle. Nature (London) 314:363–366, 1985.

    CAS  Google Scholar 

  167. Hann SR, Thompson CB, Eisenman RN: c-myc oncogene protein synthesis is independent of the cell cycle in human and avian cells. Nature (London) 314:366–369, 1985.

    CAS  Google Scholar 

  168. Einat M, Resnitzky D, Kimchi A: Close link between reduction of c-myc expression by interferon and G0/G1 arrest. Nature (London) 313:597–600, 1985.

    CAS  Google Scholar 

  169. Lachman H, Skoultchi A: Expression of c-myc changes during differentiation of mouse erythroleukemia cells. Nature (London) 310:592–594, 1984.

    CAS  Google Scholar 

  170. de Bustros A, Baylin SB, Berger CL, Roos BA, Leong SS, Nelkin BD: Phorbol esters increase calcitonin gene transcription and decrease c-myc mRNA levels in cultured human medullary thyroid carcinoma. J Biol Chem 260:98–104, 1985.

    PubMed  Google Scholar 

  171. Sejersen T, Suemegi J, Gingertz NR: Density-dependent arrest of DNA relication is accompanied by decreased levels of c-myc mRNA in myogenic but not in differentiation-defective myoblasts. J Cell Physiol 125:465–470, 1985.

    PubMed  CAS  Google Scholar 

  172. Endo T, Nadal-Ginard B: Transcriptional and posttranscriptional control of c-myc during myoenesis: its mRNA remains inducible in differentiated cells and does not suppress the differentiated phenotype. Mol Cell Biol 6:1412–141, 1986.

    PubMed  CAS  Google Scholar 

  173. Freytag SO: Enforced expression of the c-myc oncogene inhibits cell differentiation by precluding entry into a distinct predifferentiation state in Go/G1 Mol Cell Biol 8:1614–1624, 1988.

    PubMed  CAS  Google Scholar 

  174. Dotto GP, Gilman MZ, Maruyama M, Weinberg RA: c-myc and c-fos expression in differentiating mouse primary keratinocytes. EMBO J 5:2853–2857, 1986.

    PubMed  CAS  Google Scholar 

  175. Coppola JA, Cole MD: Constitutive c-myc oncogene expression blocks mouse erythroleu-kaemia cell differentiation but not commitment. Nature (London) 320:760–763, 1986.

    CAS  Google Scholar 

  176. Dmitrovsky E, Kuehl WM, Hollis GF, Kirsch IR, Bender TP, Segal S: Expression of a transfected human c-myc oncogene inhibits differentiation of a mouse erythroleukaemia cell line. Nature (London) 322:748–750, 1986.

    CAS  Google Scholar 

  177. Prochownik EV, Kukowska J: Deregulated expression of c-myc by murine erythroleu-kaemia cells prevent differentiation. Nature (London) 322:848–850, 1986.

    CAS  Google Scholar 

  178. Lachman HM, Cheng G, Skouitchi AI: Transfection of mouse erythroleukemia cells with myc sequences changes the rate of induced commitment to differentiate. Proc Natl Acad Sci USA 83:6480–6484, 1986.

    PubMed  CAS  Google Scholar 

  179. Wingrove TG, Watt R, Keng P, Macara IG: Stabilization of myc proto-oncogene proteins during Friend murine erythroleukemia cell differentiation. J Biol Chem 263:8918–8924, 1988.

    PubMed  CAS  Google Scholar 

  180. Kume TU, Takada S, Obinata M: Probability that the commitment of murine erythroleu-kemia cell differentiation is determined by the c-myc level. J Mol Biol 202:779–786, 1988.

    PubMed  CAS  Google Scholar 

  181. Griepp A, Westphal H: Antisense Myc sequences induce differentiation of F9 cells. Proc Natl Acad Sci USA 85:6806–6810, 1988.

    Google Scholar 

  182. Yokoyama K, Imamoto F: Transcriptional control of the endogenous MYC protooncogene by antisense RNA. Proc Natl Acad Sci USA 84:7363–7367, 1987.

    PubMed  CAS  Google Scholar 

  183. Holt JT, Redner RL, Nienhuis AW: An oligomer complementary to c-myc mRNA inhibits proliferation of HL-60 promyelocytic cells and induces differentiation. Mol Cell Biol 8:963–973, 1988.

    PubMed  CAS  Google Scholar 

  184. Prochownik EV, Kukowska J, Rodgers C: c-myc antisense transcripts accelerate differentation and inhibit Gx progression in murine erythroleukemia cells. Mol Cell Biol 8:3683–3695, 1988.

    PubMed  CAS  Google Scholar 

  185. Studzinski GP, Brelvi ZS, Feldman SC, Watt RA: Participation of c-myc protein in DNA synthesis of human cells. Science 234:467–470, 1986.

    PubMed  CAS  Google Scholar 

  186. Gutierrez C, Guo Z-S, Farrell-Towt J, Ju G, DePamphilis ML: c-myc protein and DNA replication: Separation of c-myc antibodies from an inhibitor of DNA synthesis. Mol Cell Biol 7:4597–4598, 1987.

    Google Scholar 

  187. Iguchi-Ariga SMM, Itani T, Kiji Y, Ariga H: Possible function of the c-myc product: promotion of cellular DNA replication. EMBO J 6:2365–2371, 1987.

    PubMed  CAS  Google Scholar 

  188. Cavalieri F, Goldfarb M: Growth factor-deprived BALB/c 3T3 murine fibroblasts can enter the S phase after induction of c-myc gene expression. Mol Cell Biol 7:3554–3560, 1987.

    PubMed  CAS  Google Scholar 

  189. Classon M, Henriksson M, Sumegi J, Klein G, Hammaskjold M-L: Elevated c-myc expression facilitates the replication of SV40 DNA in human lymphoma cells. Nature (London) 330:272–275, 1987.

    CAS  Google Scholar 

  190. Iguchi-Ariga SMM, Itani T, Yamaguchi M, Ariga H: c-myc protein can be substituted for SV40 T antigen in SV40 DNA replication. Nucleic Acids Res 15:4889–4899, 1987.

    PubMed  CAS  Google Scholar 

  191. Kingston RE, Baldwin AS Jr, Sharp PA: Regulation of heat shock protein 70 gene expression by c-myc. Nature 312:280–282, 1984.

    PubMed  CAS  Google Scholar 

  192. Kaddurah-Daouk R, Greene JM, Baldwin AS Jr, Kingston RE: Activation and repression of mammalian gene expression by the c-myc protein. Genes Devel 1:347–357, 1987.

    PubMed  CAS  Google Scholar 

  193. Onclercq R, Gilardi P, Lavenu A, Cremisi C: c-myc products trans-activate the adenovirus E4 promoter in EC stem cells by using the same target sequence as E1A products. J Virol 62:4533–4537, 1988.

    PubMed  CAS  Google Scholar 

  194. Manolagas SC, Provvedini DM, Murray EJ, Murray SS, Tsonis PA, Spandidos DA: Association between the expression of the c-myc oncogene mRNA and the expression of the receptor protein for 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 84:856–860, 1987.

    PubMed  CAS  Google Scholar 

  195. Schweinfest CW, Fujiwara S, Lau LF, Papas TS: c-myc can induce expression of G0/G1 transition genes. Mol Cell Biol 8:3080–3087, 1988.

    PubMed  CAS  Google Scholar 

  196. Versteeg R, Noordermeer IA, Kruse-Wolters M, Ruiter DJ, Schrier PI: c-myc down-regulates class I HLA expression in human melanomas. EMBO J 7:1023–1029, 1988.

    PubMed  CAS  Google Scholar 

  197. Lech K, Anderson K, Brent R: DNA-bound Fos proteins activate transcription in yeast. Cell 52:179–186, 1988.

    PubMed  CAS  Google Scholar 

  198. Ralston R, Bishop JM: The protein products of the myc and myb oncogenes and adenovirus Ela are structurally related. Nature (London) 306:803–805, 1983.

    CAS  Google Scholar 

  199. Kingston RE, Baldwin AS, Sharp PA: Transcriptional control by oncogenes. Cell 41:3–5, 1985.

    PubMed  CAS  Google Scholar 

  200. Davis RL, Weintraub H, Lasser AB: Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000, 1987.

    PubMed  CAS  Google Scholar 

  201. Caudy M, Vassin H, Brand M, Tuma R, Jan LY, Jan YN: daughterless, a Drosophila gene essential for both neurogenesis and sex determination, has sequence similarities to myc and achaete-scute complex. Cell 55:1061–1067, 1988.

    PubMed  Google Scholar 

  202. Villares R, Cabrera CV: The achaete-scute gene complex of D. melanogaster: conserved domains in a subset of genes required for neurogenesis and their homology to myc. Cell 50:415–424, 1987.

    PubMed  CAS  Google Scholar 

  203. Vogt PK, Bos TJ, Doolittle RF: Homology between the DNA-binding domain of the GCN4 regulatory protein of yeast and the carboxy-terminal region of a protein coded for by the oncogene jun. Proc Natl Acad Sci USA 84:3316–3319, 1987.

    PubMed  CAS  Google Scholar 

  204. Landschulz WH, Johnson PF, Adashi EY, Graves BJ, McKnight SL: Isolation of a recombinant copy of the gene encoding C/EBP. Genes Devel 2:786–800, 1988.

    PubMed  CAS  Google Scholar 

  205. Landschulz WH, Johnson PF, McKnight SL: The lecine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1789–1794, 1988.

    Google Scholar 

  206. Kassis JA, Poole SJ, Wright DK, O’Farrell PH: Sequence conservation in the protein coding and intron regions of the engrailed transcription unit. EMBO J 5:3583–3589, 1986.

    PubMed  CAS  Google Scholar 

  207. Ramsay GR, Hayman MJ: Isolation and biochemical characterization of partially transformation-defective mutants of avian myelocytomatosis virus strain MC29: localization of the mutation of the myc domain of the 110,000-dalton gag-myc polyprotein. J Virol 41:745–753, 1982.

    PubMed  CAS  Google Scholar 

  208. Bister K, Trachman C, Jansen HW, Schroeer B, and Patschinsky T: Structure of mutant and wild-type MC-29 v-myc alleles and biochemical properties of their protein products. Oncogene 1:97–109, 1987.

    PubMed  CAS  Google Scholar 

  209. Schwab M, Alitalo K, Klempnauer K-H, Varmus HE, Bishop JM, Gilbert F, Brodeur G, Goldstein M, Trent J: Amplified DNA with limited homology to the myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumor. Nature (London) 305:245–248, 1983.

    CAS  Google Scholar 

  210. Kohl NE, Kanda W, Schreck RR, Bruns G, Latt SA, Gilbert F, Alt FW: Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 35:359–367, 1983.

    PubMed  CAS  Google Scholar 

  211. Kohl NE, Legouy E, DePinho RA, Nisen PD, Smith RK, Gee CE, Alt FW: Human N-myc is closely related in organization and nucleotide sequence to c-myc. Nature (London) 319:73–77, 1986.

    CAS  Google Scholar 

  212. Stanton LW, Schwab M, Bishop JM: Nucleotide sequence of the human N-myc gene. Proc Natl Acad Sci USA 83:1772–1776, 1986.

    PubMed  CAS  Google Scholar 

  213. DePinho RA, Legouy E, Feldman LB, Kohl NE, Yancopoulos GD, Alt FW: Structure and expression of the murine N-myc gene. Proc Natl Acad Sci USA 83:1827–1831, 1986.

    PubMed  CAS  Google Scholar 

  214. Nau MM, Burke BJ, Carney DN, Gazdar AF, Battey JF, Sausville EA, Minna JD: Human small-cell lung cancers show amplification and expression of the N-myc gene. Proc Natl Acad Sci USA 83:1092–1096, 1986.

    PubMed  CAS  Google Scholar 

  215. Slamon DJ, Boone TC, Seeger RC, Keith DE, Chazin V, Lee HC, Souza LM: Identification and characterization of the protein encoded by the human N-myc oncogene. Science 232:768–772, 1986.

    PubMed  CAS  Google Scholar 

  216. Ramsay G, Stanton L, Schwab M, Bishop JM: The human proto-oncogene N-myc encodes nuclear proteins that bind DNA. Mol Cell Biol 6:4450–4457, 1986.

    PubMed  CAS  Google Scholar 

  217. Ikegaki N, Bukovsky J, Kennett RH: Identification and characterization of the NMYC gene product in human neuroblastoma cells by monoclonal antibodies with defined specificities. Proc Natl Acad Sci USA 83:5929–5933, 1986.

    PubMed  CAS  Google Scholar 

  218. Zimmerman KA, Yancopoulos GD, Collum RG, Smith RK, Kohl NE, Denis KA, Nau MM, Witte ON, Toran-Allerand D, Gee CE, Alt FW: Differential expression of myc family genes during murine development. Nature 319:780–783, 1986.

    PubMed  CAS  Google Scholar 

  219. Jakobovits A, Schwab M, Bishop JM, Martin G: Expression of N-myc in teratocarcinoma cells and mouse embryos. Nature 318:188–191, 1985.

    PubMed  CAS  Google Scholar 

  220. Sejersen T, Rahm M, Szabo G, Ingvarsson S, Sumegi J: Similarities and differences in the regulation of N-myc and c-myc genes in murine embryonal carcinoma cells. Exp Cell Res 172:304–317, 1987.

    PubMed  CAS  Google Scholar 

  221. Lee W-H, Murphree AL, Benedict WF: Expression and amplification of the N-myc gene in primary retinoblastoma. Nature (London) 309:458–460, 1984.

    CAS  Google Scholar 

  222. Nau MM, Brooks BJ Jr, Carney DN, Gazdar AF, Battey JF, Sausville EA, Minna JD: Human small-cell lung cancers show amplification and expression of the N-myc gene. Proc Natl Acad Sci USA 83:1092–1096, 1986.

    PubMed  CAS  Google Scholar 

  223. Nisen PD, Zimmerman KA, Cotter SV, Gilbert F, Alt FW: Enhanced expression of the N-myc gene in Wilm’s tumors. Cancer Res 46:6217–6222, 1986.

    PubMed  CAS  Google Scholar 

  224. Schwab M, Ellison J, Busch M, Rosenau W, Varmus HE, Bishop JM: Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc Natl Acad Sci USA 81:4940–4944, 1984.

    PubMed  CAS  Google Scholar 

  225. Kohl NE, Gee CE, Alt FW: Activated expression of the N-myc gene in human neuroblastomas and related tumors. Science 226:1335–1337, 1984.

    PubMed  CAS  Google Scholar 

  226. Brodeur GM, Seeger RC, Schwab M, Vermus HE, Bishop JM: Amplification of N-myc in untreated human neuroblastomas correlates with advanced stage disease. Science 224: 1121–1124, 1984.

    PubMed  CAS  Google Scholar 

  227. Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, Hammond D: Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313:1111–1116, 1985.

    PubMed  CAS  Google Scholar 

  228. Bernards R, Dessain SK, Weinberg RA: N-myc amplification causes down-modulation of MHC class I antigen expression in neuroblastoma. Cell 47:667–674, 1986.

    PubMed  CAS  Google Scholar 

  229. Schwab M, Varmus HE, Bishop JM, Grzeschik K-H, Naylor SL, Sakaguchi AY, Brodeur G, Trent J: Chromosome localization in normal human cells and neuroblastomas of a gene related to c-myc. Nature (London) 308:288–291.

    Google Scholar 

  230. Schwab M, Varmus HE, Bishop JM: Human N-myc gene contributes to neoplastic transformation of mammalian cells in culture. Nature 316:160–162, 1985.

    PubMed  CAS  Google Scholar 

  231. Yancopoulos GD, Nisen PD, Tesfaye A, Kohl NE, Goldfarb MP, Alt FW: N-myc can cooperate with ras to transform normal cells in culture. Proc Natl Acad Sci USA 82: 5455–5459, 1985.

    PubMed  CAS  Google Scholar 

  232. Small MB, Hay N, Schwab M, Bishop JM: Neoplastic transformation by the human N-myc gene. Mol Cell Biol 7:1638–1645, 1987.

    PubMed  CAS  Google Scholar 

  233. Thiele CJ, Reynolds CP, Israel MA: Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature (London) 313:404–406, 1985.

    CAS  Google Scholar 

  234. Nau MM, Brooks BJ, Battey J, Sausville E, Gazdar AF, Kirsch IR, McBride OW, Bertness V, Hollis GF, Minna JD: L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature (London) 318:69–73, 1985.

    CAS  Google Scholar 

  235. DePinho RA, Hatton KS, Tesfaye A, Yancopoulos GD, Alt FW: The human myc gene family: structure and activity of L-myc and an L-myc pseudogene. Genes Devel 1:1311–1326, 1987.

    PubMed  CAS  Google Scholar 

  236. Kaye F, Battey J, Nau M, Brooks B, Seifter E, De Greve J, Birrer M, Sausville E, Minna J: Structure and expression of the human L-myc gene reveal a complex pattern of alternative mRNA processing. Mol Cell Biol 8:186–195, 1988.

    PubMed  CAS  Google Scholar 

  237. Legouy E, De Pinho R, Zimmerman K, Collum R, Yancopoulos G, Mitsock L, Kriz R, Alt FW: Structure and expression of the murine L-myc gene. EMBO J 6:3359–3366, 1987.

    PubMed  CAS  Google Scholar 

  238. De Greve J, Battey J, Fedorko J, Birrer M, Evan G, Kaye F, Sausville E, Minna J: The human L-myc gene encodes multiple nuclear phosphoproteins from alternatively processed mRNAs. Mol Cell Biol 8:4381–4388, 1988.

    PubMed  Google Scholar 

  239. Birrer MJ, Segal S, De Greve JS, Kaye F, Sausville EA, Minna JD: L-myc cooperates with ras to transform primary rat embryo fibroblasts. Mol Cell Biol 8:2668–2673, 1988.

    PubMed  CAS  Google Scholar 

  240. Ingvarsson S, Asker C, Axelson H, Klein G, Sumegi J: Structure and expression of B-myc, a new member of the myc gene family. Mol Cell Biol 8:3168–3174, 1988.

    PubMed  CAS  Google Scholar 

  241. Ingvarsson S, Asker C, Wirschubsky Z, Szpirer J, Levan G, Klein G, Sumegi J: Mapping of Lmyc and Nmyc to rat chromosomes 5 and 6. Somat Cell Mol Genet 13:335–339, 1987.

    PubMed  CAS  Google Scholar 

  242. DePinho R, Mitsock L, Hatton K, Ferrier P, Zimmerman K, Legouy E, Tesfaye A, Collum R, Yancopoulos G, Nisen P, Kriz R, Alt F: Myc family of cellular oncogenes. J Cell Biochem 33:257–266, 1987.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lee, W.M.F. (1989). The myc family of nuclear proto-oncogenes. In: Benz, C., Liu, E. (eds) Oncogenes. Cancer Treatment and Research, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1599-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1599-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8885-5

  • Online ISBN: 978-1-4613-1599-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics