Skip to main content

Adoptive immunotherapy of urologic tumors

  • Chapter
Book cover Urologic Oncology

Part of the book series: Cancer Treatment and Research ((CTAR,volume 46))

Abstract

The treatment of humans with advanced cancer represents a major therapeutic challenge. One approach to treating metastatic cancer is immunotherapy, which can be classified into active and passive categories. Active immunotherapy refers to the immunization of the tumor-bearing host with materials that attempt to induce in the host a state of immune responsiveness to the tumor. Passive (adoptive) immunotherapy involves the transfer to the tumor-bearing host of active immunologic reagents, such as cells with antitumor reactivity, that can mediate, either directly or indirectly, antitumor effects. Most attempts at immunotherapy in the last several decades have involved active immunotherapy utilizing nonspecific immune stimulators such as bacillus Calmette-Guerin (BCG), Corneybacterium parvum, and levamisole, with the hope that a nonspecific increase in human reactivity would concomitantly result in an augmentation of the putative antitumor immunologic response of the tumor-bearing host. The very large number of clinical trials of both specific and nonspecific active immunotherapy of human cancer performed in the last decade were almost universally unsuccessful, and enthusiasm for this approach to immunotherapy has waned considerably. Passive approaches to immunotherapy have been rarely utilized in the therapy of human cancer because of the theoretic and technical difficulties that were associated with raising the immunologic reagents necessary to perform these clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morgan DA, Ruscetti FW, Gallo, RG: Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193: 1007, 1976.

    Article  PubMed  CAS  Google Scholar 

  2. Taniguchi T, Matsui H, Fujita T, et al.: Structure and expression of a cloned cDNA for human interleukin-2. Nature 302: 305, 1983.

    Article  PubMed  CAS  Google Scholar 

  3. Rosenberg SA, Grimm EA, McGrogen M, Doyle M, Kawasaki E, Koths K, Mark DE: Biological activity of recombinant human interleukin-2 produced in E. coli. Science 223: 1412, 1984.

    Article  PubMed  CAS  Google Scholar 

  4. Waldmann TA: The structure, function and expression of interleukin-2 receptor on normal and malignant lymphocytes. Science 232: 727, 1986.

    Article  PubMed  CAS  Google Scholar 

  5. Rosenberg SA: Adoptive immunotherapy of cancer using lymphokine activated killer cells and recombinant interleukin-2. In: Important Advances in Oncology, De Vita VT, Hellman S, Rosenberg SA (eds). JB Lippincott, New York, 1986, pp. 55–91.

    Google Scholar 

  6. Lotze MT, Matory YL, Ettinghausen SE, Rayner AA, Sharrow SO, Seipp CA, Custer MC, Rosenberg SA: In vivo administration of purified human interleukin-2. II. Half life, immunologic effects and expansion of peripheral lymphoid cells in vivo with recombinant IL-2. Immunol 135: 2865, 1985.

    CAS  Google Scholar 

  7. Lotze MT, Frana LW, Sharrow SO, Robb RJ, Rosenberg SA: In vivo administration of purified human interleukin-2. I. Half life and immunologic effects of the Jurkat cell line derived IL-2. J Immuno 134: 157, 1985.

    CAS  Google Scholar 

  8. Yron I, Wood TA Jr, Spiess PJ, Rosenberg SA: In vivo growth of murine T cells. V. The isolation and growth of lymphoid cells infiltrating syngeneic solid tumors. J Immunol 125: 238, 1980.

    PubMed  CAS  Google Scholar 

  9. Lotze MT, Grimm E, Mazumder A, Strausser JL, Rosenberg SA: In vitro growth of cytotoxic human lymphocytes. IV. Lysis of fresh and cultured autologous tumor by lymphocytes cultured in T cell growth factor (TCGF). Cancer Res 41: 4420, 1981.

    PubMed  CAS  Google Scholar 

  10. Grimm EA, Ramsey KM, Mazumder A, Wilson DJK, Djeu JY, Rosenberg SA: Lymphokine-activated killer cell phenomenon: Lysis of NK resistant fresh solid tumor cells by IL-2 activated autologous human peripheral blood lymphocytes. J Exp Med 155: 1823, 1982.

    Article  PubMed  CAS  Google Scholar 

  11. Rosenberg SA, Grimm EA, Lotze MT: The growth of human lymphocytes in T cell growth factor: Potential applications for tumor immunotherapy. In: Lymphokines, Vol. 7, Mizel SB (ed). Academic Press, New York, 1982, pp. 213–247.

    Google Scholar 

  12. Rayner AA, Grimm EA, Lotze MT, Chu EW, Rosenberg SA: Lymphokine-activated killer (LAK) cells. Analysis of factors relevant to immunotherapy of human cancer. Cancer 55: 1327, 1985.

    Article  PubMed  CAS  Google Scholar 

  13. Rosenberg SA: Lymphokine-activated killer cells: A new approach to the immunotherapy of human cancer. Cancer 55: 1327, 1985.

    Article  PubMed  Google Scholar 

  14. Waldmann TA, Goldman CK, Robb RJ, et al.: Expression of interleukin-2 receptors on activated human B cells. J Exp Med 160: 1450, 1984.

    Article  PubMed  CAS  Google Scholar 

  15. Jung LKL, Toshiro H, Fu SM: Detection and functional studies of p60–55 (Tac antigeni) on activated human B cells. J Exp Med 160: 1597, 1984.

    Article  PubMed  CAS  Google Scholar 

  16. Malkovsky M, Loveland B, North M, et al.: Recombinant interleukin-2 directly augments the cytotoxicity of human moncytes. Nature 325: 262, 1987.

    Article  PubMed  CAS  Google Scholar 

  17. Hancock WW, Muller WA, Cotran RS: Interleukin-2 receptors are expressed by alveolar macrophages during pulmonary sarcoidosis and are inducible by lymphokine treatment of normal human lung macrophages, blood monocytes, and moncyte cell lines. J Immunol 138: 185, 1987.

    PubMed  CAS  Google Scholar 

  18. Horwitz ME, Hofman F, Gray D, Gillis S, Horwitz DA: Interleukin-2 can bind to human monocytes. Fed Proc 44: 948, 1985.

    Google Scholar 

  19. Rosenberg SA, Spiess P, Lafreniere R: A new approach to the adoptive immunotherapy of cancer with tumor infiltrating lymphocytes. Science 223: 1318, 1986.

    Article  Google Scholar 

  20. Rayner AA, Grimm EA, Lotze MT, Chu EW, Rosenberg SA: Lymphokine-activated killer (LAK) cells. Analysis of factors relevant to the immunotherapy of human cancer. Cancer 55: 1327, 1985.

    Article  PubMed  CAS  Google Scholar 

  21. Belldegrun A, Uppenkamp I, Rosenberg SA: Antitumor reactivity of human lymphokine activated killer (LAK) cells against fresh and cultured preparations of renal cell cancer. J Urol 139: 150, 1988.

    PubMed  CAS  Google Scholar 

  22. Grimm EA, Rosenberg SA: The human lymphokine activated killer cell phenomenon. In: Lymphokines, Vol. 9, Pick E, Candy M (eds). Academic Press, New York, 1983.

    Google Scholar 

  23. Skibber J, Lotze M, Muul L, Uppenkamp I, Ross W, Rosenberg SA: Human lymphokine activated killer cells: Isolation and characterization of the precursor and effector cell. Submitted.

    Google Scholar 

  24. Philips J, Lanier L: Dissection of the lymphokine activated killer phenomenon: Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J Exp Med 164: 814, 1986.

    Article  Google Scholar 

  25. Lotze MT, Custer MC, Rosenberg SA: Interleukin-2 (IL-2) administration to humans results in the rapid emigration of a specific lymphokine subset (CD2+, 3, 11+, 16+) from the peripheral blood. Submitted, 1987.

    Google Scholar 

  26. Mule JJ, Yang J, Shu S, Rosenberg SA: The anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin-2 in vivo: Direct correlation between reduction of established metastases and cytolytic activity of lymphokine-activated killer cells. J Immunol 136: 3899, 1986.

    PubMed  CAS  Google Scholar 

  27. Yang JC, Mule JJ, Rosenberg SA: Characterization of the murine lymphokine-activated killer precursor and effector cell. Surg Forum 36: 408, 1985.

    Google Scholar 

  28. Mule JJ, Yang JC, Lafreniere R, Shu S, Rosenberg SA: Identification of cellular mechanisms operational in vivo during the regression of established pulmonary metastases by the systemic administration of high-dose recombinant interleukin-2. J Immunol 139: 285, 1987.

    PubMed  CAS  Google Scholar 

  29. Rosenberg SA: Lymphokine-activated killer cells: A new approach to the immunotherapy of cancer, [guest editorial] J Natl Cancer Inst 75: 595, 1985.

    PubMed  CAS  Google Scholar 

  30. Mule JJ, Shu S, Schwarz SL, Rosenberg SA: Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science 225: 1487, 1984.

    Article  PubMed  CAS  Google Scholar 

  31. Mule JJ, Shu S, Rosenberg SA: The anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin-2 in vivo. J Immunol 135: 646, 1985.

    PubMed  CAS  Google Scholar 

  32. Rosenberg SA, Mule JJ, Spiess PJ, Reichert CM, Schwarz S: Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high dose recombinant IL-2. J Exp Med 161: 1169, 1985.

    Article  PubMed  CAS  Google Scholar 

  33. Lafreniere R, Rosenberg SA: Successful immunotherapy of murine hepatic metastases with lymphokine-activated killer cells and recombinant interleukin-2. Cancer Res 45: 3735, 1985.

    PubMed  CAS  Google Scholar 

  34. Lafreniere R, Rosenberg SA: Adoptive immunotherapy of murine hepatic metastases with lymphokine activated killer (LAK) cells and recombinant interleukin-2 (RIL-2) can mediate the regression of both immunogenic and non-immunogenic sarcomas and an adenocarcinoma. J Immunol 135: 4273, 1985.

    PubMed  CAS  Google Scholar 

  35. Mule JJ, Ettinghausen SE, Spiess PJ, Shu S, Rosenberg SA: The anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin-2 in vivo: An analysis of survival benefit and mechanisms of tumor escape in mice undergoing immunotherapy. Cancer Res 46: 676, 1986.

    PubMed  CAS  Google Scholar 

  36. Ettinghausen S, Lipford E, Mule J, Rosenberg SA: Recombinant interleukin-2 stimulates in vivo proliferation of adoptively transferred lymphokine-activated killer (LAK) cells. J Immunol 135: 3623, 1985.

    PubMed  CAS  Google Scholar 

  37. Mule JJ, Yang JC, Lafreniere R, et al.: Identification of cellular mechanisms operational in vivo during the regression of established pulmonary metastases by the systemic administration of high-dose recombinant interleukin-2. J Immunol 139: 285, 1987.

    PubMed  CAS  Google Scholar 

  38. Rosenberg SA: Immunotherapy of patients with advanced cancer using interleukin-2 alone or in combination with lymphokine activated killer cells. In: Important Advances in Oncology, De Vita VT, Hellman S, Rosenberg SA (ed). JB Lippincott, New York, 1988, pp. 217–257.

    Google Scholar 

  39. Yron I, Wood TA Jr, Spiess PJ, Rosenberg SA: In vivo growth of murine T cells. V. The isolation and growth of lymphoid cells infiltrating syngeneic solid tumors. J Immunol 125: 238, 1980.

    PubMed  CAS  Google Scholar 

  40. Vose BM, Vanky F, Klein E: Human tumor-lymphocyte interaction in vitro. V. Comparison of the reactivity of tumor infiltrating blood and lymph node lymphocytes with autologous tumor cells. Int J Cancer 20: 895, 1977.

    Article  PubMed  CAS  Google Scholar 

  41. Totterman TH, Hayry P, Saksela E, Timonen T, Eklund B: Cytological and functional analysis of inflammatory infiltrates in human malignant tumors. Eur J Immunol 8: 872, 1978.

    Article  PubMed  CAS  Google Scholar 

  42. Vose BM, Moore M: Suppressor cell activity of lymphocytes infiltrating human lung and breast tumors. Int J Cancer 24: 579, 1979.

    Article  PubMed  CAS  Google Scholar 

  43. Eremin O, Coombs RRA, Ashby J: Lymphocytes infiltrating human breast cancers lack K-cell activity and show low levels of NK-cell activity. Br J Cancer 44: 166, 1981.

    Article  PubMed  CAS  Google Scholar 

  44. Moy PM, Holmes EC, Golub, SH: Depression of natural killer cytotoxic activity in lymphocytes infiltrating human pulmonary tumors. Cancer Res 45: 57, 1985.

    PubMed  CAS  Google Scholar 

  45. Rabinowich H, Cohen R, Buderman I, et al.: Functional analysis of mononuclear cells infiltrating into tumors: Lysis of autologous human tumor cells by cultured infiltrating lymphocytes. Cancer Res 47: 173, 1987.

    PubMed  CAS  Google Scholar 

  46. Klein E, Vanky F, Galili U, Vose BM, Fopp M: Separation and characteristics of tumor infiltrating lymphocytes in man. In: Contemporary Topics in Immunobiology, Vol. 10, Witz IP, Hanna MG Jr (eds). New York, Plenum Press, 1980, pp. 79–107.

    Google Scholar 

  47. Vose BM: Quantitation of proliferative and cytotoxic precursor cells directed against human tumors: Limiting dilution analysis in peripheral blood and at the tumor site. Int J Cancer 30: 135, 1982.

    Article  PubMed  CAS  Google Scholar 

  48. Keong A, Rabson AR: Supernatants derived from a human hepatocellular carcinoma cell line (PLC/PRF/5) activates a population of T-suppressor cells. Cancer Immunol Immunother 15: 178, 1983.

    PubMed  CAS  Google Scholar 

  49. Miescher S, Witheside TL, Carrel S, Fliedner V: Functional properties of tumor infiltrating and blood lymphocytes in patients with solid tumors: Effects of tumor cells and their supernatants on proliferative responses of lymphocytes. J Immunol 136: 1899, 1986.

    PubMed  CAS  Google Scholar 

  50. Vose BM, Ferguson R, Moore M: Mitogen responsiveness and inhibitory activity of mesenteric lymph node cells. Cancer Immunol Immunother 13: 105, 1982.

    Article  PubMed  CAS  Google Scholar 

  51. Topalian SL, Muul LM, Rosenberg SA: Growth and immunologic characteristics of lymphocytes infiltrating human tumor. Surg Forum 37: 390, 1987.

    Google Scholar 

  52. Topalian SL, Muul LM, Dolomon D, Rosenberg SA: Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials. J Immunol Meth 102: 127, 1987.

    Article  CAS  Google Scholar 

  53. Belldegrun A, Linehan MW, Robertson CN, Rosenberg SA: Isolation and characterization of lymphocytes infiltrating human renal cell cancer: Possible application for therapeutic adoptive immunotherapy. Surg Forum 37: 671, 1986.

    Google Scholar 

  54. Belldegrun A, Muul LM, Rosenberg SA: Interleukin-2 expanded tumor infiltrating lymphocytes in human renal cell cancer: Isolation, characterization and antitumor activity. Cancer Res 48: 206, 1988.

    PubMed  CAS  Google Scholar 

  55. Muul LM, Spiess PJ, Director EP, Rosenberg SA: Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J Immunol 138: 989, 1987.

    PubMed  CAS  Google Scholar 

  56. Topalian SL, Solomon D, Avis FP, Change AE, Freerksen DL, Linehan WM, Lotze MT, Robertson CN, Seipp CA, Simon P, Simpson CG, Rosenberg SA: Immunotherapy of patients with advanced cancer using tumor infiltrating lymphocytes and recombinant interleukin-2: A pilot study. J Clin Oncol 6: 839, 1988.

    PubMed  CAS  Google Scholar 

  57. Itoh K, Tilden AB, Balch CM: Interleukin-2 activation of cytotoxic T lymphocytes into human metastatic melanomas. Cancer Res 46: 3011, 1986.

    PubMed  CAS  Google Scholar 

  58. Belldegrun A, Topalian SL, Linehan WM, Robertson CN, Rosenberg SA: Growth and antitumor activity of tumor-involved draining lymph node cells versus tumor-infiltrating lymphocytes from patients with renal cell cancer. Surg Forum 38: 688, 1987.

    Google Scholar 

  59. Nishimura T, Yagi H, Uchiyama Y, Hashimoto Y: Generation of lymphokine-activated killer (LAK) cells from tumor-infiltrating lymphocytes. Cell Immunol 100: 149, 1986.

    Article  PubMed  CAS  Google Scholar 

  60. Anderson TM, Ibayashi Y, Holmes EC, Golub SH: Modification of natural killer activity of lymphocytes infiltrating human lung cancers. Cancer Immunol Immunother 25: 65, 1987.

    Article  PubMed  CAS  Google Scholar 

  61. Rabinowich H, Cohen R, Burderman I, Steiner Z, Klajman A: Functional analysis of mononuclear cells infiltrating into tumors: Lysis of autologous human tumor cells by cultured infiltrating lymphocytes. Cancer Res 47: 173, 1987.

    PubMed  CAS  Google Scholar 

  62. Kurnick JT, Kradin RL, Blumberg R, Schneeberger EE, Boyle LA: Functional characterization of T lymphocytes propagated from human lung carcinomas. Clin Immunol Immunopathol 38: 367, 1986.

    Article  PubMed  CAS  Google Scholar 

  63. Kimura H, Yamaguchi Y, Fujisawa T: Cytotoxicity of autologous and allogeneic lymphocytes against cultured human lung cancer cells: Optimal conditions for the production of cytotoxic lymphocytes. Gann 75: 1006, 1984.

    PubMed  CAS  Google Scholar 

  64. Heo DS, Whiteside TL, Johnson JT, Chen K, Barnes EL, Herberman RB: Long-term interleukin-2-dependent growth and cytotoxic activity of tumor-infiltrating lymphocytes from human squamous cell carcinomas of the head and neck. Cancer Res 47: 6353, 1987.

    PubMed  CAS  Google Scholar 

  65. Miescher S, Whiteside TL, Moretta L, Von Fliedner V: Clonal and frequency analyses of tumor infiltrating T lymphocytes from human solid tumors. J Immunol 138: 4004, 1987.

    PubMed  CAS  Google Scholar 

  66. Spiess PJ, Yang JC, Rosenberg SA: In vivo activity of tumor-infiltrating lymphocytes expanded in recombinant interleukin-2. J Nat Cancer Inst 79: 1067, 1987.

    PubMed  CAS  Google Scholar 

  67. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, Matory YL, Skibber JM, Shiloni E, Vetto JT, Seipp CA, Simpson C, Reichert CM: Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313: 1485, 1985.

    Article  PubMed  CAS  Google Scholar 

  68. Rosenberg SA, Lotze MT, Muul LM, Change AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT, Seipp CA, Simpson CG, White DE: A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high dose interleukin-2 alone. N Engl J Med 316: 889, 1987.

    Article  PubMed  CAS  Google Scholar 

  69. Rosenberg SA: Immunotherapy of cancer using interleukin-2: Current status and future prospects. Immunol Today 9: 58, 1988.

    Article  PubMed  CAS  Google Scholar 

  70. Rosenberg SA: Cancer therapy with interleukin-2: Immunologic manipulations can mediate the regression of cancer in man. J Clin Oncol 6: 403, 1988.

    PubMed  CAS  Google Scholar 

  71. Rosenberg SA: Immunotherapy of cancer by the systemic administration of lymphoid cells plus interleukin-2. J Biol Res Mod 3: 501, 1984.

    CAS  Google Scholar 

  72. Rosenstein M, Ettinghausen SE, Rosenberg SA: Extravasation of intravascular fluid mediated by the systemic administration of recombinant interleukin-2. J Immunol 17: 35, 1986.

    Google Scholar 

  73. Belldegrun A, Webb DE, Austin HA, et al.: Effects of interleukin-2 on renal function in patients receiving immunotherapy for advanced cancer. Ann Int Med 106: 817, 1987.

    PubMed  CAS  Google Scholar 

  74. Webb DE, Austin HA, Belldegrun A, et al.: Metabolic and renal effects of interleukin-2 immunotherapy for metastatic cancer. Clin Nephrol, in press.

    Google Scholar 

  75. Belldegrun A, Webb DE, Austin HA, et al.: Renal toxicity of interleukin-2 administration in patients with metastatic renal cell cancer: Effect of pretherapy nephrectomy. J Urol 141: 499, 1989.

    PubMed  Google Scholar 

  76. Ettignhausen SE, Moore JG, White DE, Platanias L, Young NS, Rosenberg SA: Hematologic effects of immunotherapy with lymphokine-activated killer cells and recombinant interleukin-2 in cancer patients. Blood 69: 1654, 1987.

    Google Scholar 

  77. Lee RE, Lotze MT, Skibber JM, Tucker E, Bonow RO, Ognibene FP, Carrasquillo JA, Shelhamer JH, Parrillo JE, Rosenberg SA: Cardiorespiratory effects of immunotherapy with interleukin-2. Ann Int Med, in press.

    Google Scholar 

  78. West W, Tauer K, Yannelli J, Marshall G, Orr D, Thurman G, Oldham R: Constant infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. N Engl J Med 316: 898, 1987.

    Article  PubMed  Google Scholar 

  79. Wang J, Walle A, Gorden B, et al.: Adoptive immunotherapy for Stage IV renal cell carcinoma: A novel protocol using periodate and interleukin-2-activated autologous leukocytes and continuous infusions of low-dose interleukin-2. Am J Med 83: 1016, 1987.

    Article  PubMed  CAS  Google Scholar 

  80. Papa MZ, Yang J, Vetto JT, Shiloni E, Eisenthal A, Eisenthal A, Rosenberg SA: Synergistic effects of chemotherapy and interleukin-2 in the therapy of mice with advanced pulmonary tumors. Cancer Res, in press.

    Google Scholar 

  81. Mitchell MS, Kempf AR, Harel W, et al.: Effectiveness and tolerability of low dose cyclophosphamide and low-dose intravenous interleukin-2 in disseminated melanoma. J Clin Oncol 6: 409.

    Google Scholar 

  82. Salup PR, Wiltrout RH: Adjuvant immunotherapy of established murine renal cancer by interleukin-2-stimulated cytotoxic lymphocytes. Cancer Res 46: 3358, 1986.

    PubMed  CAS  Google Scholar 

  83. Winkelhake JL, Stampfl S, Zimmerman RJ: Synergistic effects of combination therapy with human recombinant interleukin-2 and tumor necrosis factor in murine tumor models. Cancer Res 47: 3948, 1987.

    PubMed  CAS  Google Scholar 

  84. Brouckaert PGG, Leroux-Roels GG, Guisez Y, Tavernier J, Fiers W: In vivo anti-tumor activity of recombinant human and murine TNF, alone and in combination with murine IFN-, on a syngeneic murine melanoma. Int J Cancer 38: 763, 1986.

    Article  PubMed  CAS  Google Scholar 

  85. Brunda MJ, Bellantoni D, Sulich V: In vivo anti-tumor activity of combinations of interferon alpha and interleukin-2 in a murine mode. Correlation of efficacy with the induction of cytotoxic cells resembling natural killer cells. Int J Cancer 40: 365, 1987.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

Belldegrun, A., Rosenberg, S.A. (1989). Adoptive immunotherapy of urologic tumors. In: Lepor, H., Ratliff, T.L. (eds) Urologic Oncology. Cancer Treatment and Research, vol 46. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1595-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1595-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8883-1

  • Online ISBN: 978-1-4613-1595-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics