Skip to main content

Anatomic and Physiologic Aspects of the Cerebrospinal Fluid Space

  • Chapter
The Cerebrospinal Fluid

Abstract

The cerebrospinal fluid is the clear colorless fluid that fills the ventricular cavities and the subarachnoid space. The ventricles are the vestiges of the hollow tube that constitutes the central nervous system during embryonic development, and the subarachnoid space is the space over the exterior of the brain between the arachnoid membrane and the pia mater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander L (1931). Die Anatomie der Seitentaschen der vierten Hirnkammeries. Z ges Anat l Z Anat EntwGesch 95:531–707.

    Google Scholar 

  2. Alksne JF, Lovings ET (1972). Functional ultrastructure of the arachnoid villus. Arch Neurol 27:371–377.

    PubMed  CAS  Google Scholar 

  3. Ames A III, Sakanoue M, Endo S (1964). Na, K, Ca, Mg and Cl concentrations in choroid plexus fluid and cisternal fluid compared with plasma ultrafiltrate. J Neurophysiol 27:672–681.

    PubMed  Google Scholar 

  4. Ames A III, Higashi K, Nesbett FB (1965). Relation of potassium concentration in choroid plexus fluid to that in plasma. J Physiol 181:506–515.

    PubMed  CAS  Google Scholar 

  5. Ames A III, Higashi K, Nesbett FB (1965). Effects of pCO2, acetazolamide and ouabain on composition of choroid plexus fluid. J Physiol 181:516–524.

    PubMed  Google Scholar 

  6. Askanazy M (1914). Zur Physiologie und Pathologie der Plexus chorioidei. Verh dtsch path Ges 17:85–103.

    Google Scholar 

  7. Bakay L von (1941). Die Innervation der Pia Mater, der Plexus chorioideus und der Hirngefässen mit Rücksicht auf den Einfluss des sympatiscchen Nervensystems auf die Liquorsekre-tion. Arch Psychiat Nervenkr 113:412–427.

    Google Scholar 

  8. Barr ML (1948). Observations on the foramen of Magendie in a series of human brains. Brain 71:281–289.

    PubMed  CAS  Google Scholar 

  9. Bennett MVL (1969). Electrical impedance of brain surfaces. Brain Res 15:584–590.

    PubMed  CAS  Google Scholar 

  10. Berger MP, Brumback RA (1978). Pathophysiologic mechanisms of hydrocephalus. J Clin Psychiat 39:143–151.

    CAS  Google Scholar 

  11. Bering EA Jr (1955). Choroid plexus and arterial pulsation of cerebrospinal fluid. Demonstration of the choroid plexus as a cerebrospinal fluid pump. Arch Neurol Psychiat 73:165–172.

    Google Scholar 

  12. Bering EA Jr (1958). Problems of the dynamics of the cerebrospinal fluid with particular reference to the formation of cerebrospinal fluid and its relationship to cerebral metabolism. Clin Neurosurg 5:77–98.

    Google Scholar 

  13. Bering EA Jr (1962). Circulation of the cerebrospinal fluid. Demonstration of the choroid plexus as the generator of the force for flow of fluid and ventricular enlargement. J Neurosurg 19:405–413.

    PubMed  Google Scholar 

  14. Bering EA Jr, Sato O (1963). Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20:1050–1063.

    PubMed  Google Scholar 

  15. Bickers DS, Adams RD (1949). Hereditary stenosis of the aqueduct of Sylvius as a cause of congenital hydrocephalus. Brain 72:246–262.

    PubMed  CAS  Google Scholar 

  16. Birzis L, Carter CH, Maren TH (1958). Effect of acetazolamide on CSF pressure and electrolytes in hydrocephalus. Neurology 8:522–528.

    PubMed  CAS  Google Scholar 

  17. Blake JA (1900). The roof and lateral recesses of the fourth ventricle considered morphologically and embryologically. J Comp Neurol 10:79–108.

    Google Scholar 

  18. Brightman MW, Prescott L, Reese TS (1975). Intercellular junctions of special ependyma. In: Knigge KM, Scott DE, Kobayashi H, Ishii S (eds.): Brain-Endocrine Interaction. II. The Ventricular System in Neuroendocrine Mechanisms. Basal: S. Karger, pp. 146–165.

    Google Scholar 

  19. Buhrley LE, Reed DJ (1972). The effect of furosemide on sodium-22 uptake into cerebrospinal fluid and brain. Exp Brain Res 14:503–510.

    PubMed  CAS  Google Scholar 

  20. Calabrese VP, Selhorst JB, Harbison JW (1978). Cerebrospinal fluid infusion test in pseudotumor cerebri. Ann Neurol 4:173.

    Google Scholar 

  21. Caldareli M, Di Rocco C, Rossi GF (1979). Lumbar subarachnoid infusion test in paediatric neurosurgery. Devel Med Child Neurol 21:71–82.

    Google Scholar 

  22. Clark WE LeGros (1920). On the Pacchionian bodies. J Anat 55:40–48.

    Google Scholar 

  23. Clark SL (1928). Nerve endings in the choroid plexus of the fourth ventricle. J Comp Neurol 47:1–21.

    Google Scholar 

  24. Clark SL (1934). Innervation of the chorioid plexuses and the blood vessels within the central nervous system. J Comp Neurol 60:21–35.

    Google Scholar 

  25. Cooper ERA (1958). Nerves of the meninges and the choroid plexus. Acta Anat 33:298–318.

    PubMed  CAS  Google Scholar 

  26. Coupin F (1920). Sur l’absence des trous de Magendie et de Luschka chez quelques mammifères. CR Soc Biol (Paris) 83:954–956.

    Google Scholar 

  27. Cserr HF (1971). Physiology of the choroid plexus. Physiol Rev 51:273–311.

    PubMed  CAS  Google Scholar 

  28. Curl FD, Pollay M (1968). Transport of water and electrolytes between brain and ventricular fluid in the rabbit. Exp Neurol 20:558–574.

    PubMed  CAS  Google Scholar 

  29. Cutler RWP, Page L, Galicich J, Watters GV (1968). Formation and absorption of cerebrospinal fluid in man. Brain 91:707–720.

    PubMed  CAS  Google Scholar 

  30. Dandy WE (1919). Experimental hydrocephalus. Ann Surg 70:129–142.

    PubMed  CAS  Google Scholar 

  31. Dandy WE, Blackfan KD (1914). Internal hydrocephalus. An experimental, clinical and pathological study. Am J Dis Child 8:406–482.

    Google Scholar 

  32. Davidoff LM, Dyke CG (1951). The Normal Encephalogram. 3 edition. Philadelphia: Lea & Febiger.

    Google Scholar 

  33. Davson H (1967). Physiology of the Cerebrospinal Fluid. Boston: Little, Brown and Co.

    Google Scholar 

  34. Davson H, Luck CP (1957). The effect of acetazolamide on the chemical composition of the aqueous humour and cerebrospinal fluid of some mammalian species and on the rate of turnover of 24Na in these fluids. J Physiol (Lond) 137:279–293.

    CAS  Google Scholar 

  35. Davson H, Segal MB (1970). The effects of some inhibitors and accelerators of sodium transport in the turnover of 22Na in the cerebrospinal fluid and the brain. J Physiol (Lond) 209:131–153.

    CAS  Google Scholar 

  36. Di Chiro G (1964). Movement of the cerebrospinal fluid in human beings. Nature 204:290–291.

    Google Scholar 

  37. Di Chiro G, Reames PM, Mattews WB (1964). RISA ventriculography and RISA cisternography. Neurology 14:185–191.

    Google Scholar 

  38. DiMattio J, Hochwald GM, Malhan C, Wald A (1975). Effects of changes in serum osmo-larity on bulk flow of fluid into cerebral ventricles and on brain water content. Pflugers Arch 359:253–264.

    PubMed  CAS  Google Scholar 

  39. Elman R (1923). Spinal arachnoid granulations with especial reference to the cerebrospinal fluid. Bull Johns Hopkins Hosp 34:99–104.

    Google Scholar 

  40. Elvidge AR, Branch CL, Thompson GB (1957). Observations in a case of hydrocephalus treated with Diamox. J Neurosurg 14:628–638.

    PubMed  CAS  Google Scholar 

  41. Epstein BS (1950). Pneumoencephalographic study of normal third and fourth cerebral ventricles and aqueduct of Sylvius. Am J Roentgenol 63:204–209.

    CAS  Google Scholar 

  42. Grundy HF (1962). Circulation of cerebrospinal fluid in the spinal region of the cat. J Physiol 163:457–465.

    PubMed  CAS  Google Scholar 

  43. Fisher RA, Openhaver JH (1959). The metabolic activity of the choroid plexus. J Neurosurg 16:167–176.

    PubMed  CAS  Google Scholar 

  44. Fishman RA (1959). Factors influencing the exchange of sodium between plasma and cerebrospinal fluid. J Clin Invest 38:1698–1708.

    PubMed  CAS  Google Scholar 

  45. Frazier CH, Peet MM (1914). Factors of influence in the origin and circulation of cerebrospinal fluid. Am J Physiol 35:268–282.

    Google Scholar 

  46. Fremont-Smith F (1927). The nature of the cerebrospinal fluid. Arch Neurol Psychiat 17:317–331.

    CAS  Google Scholar 

  47. Harbert JC (1971). Radionuclide cisternography. Sem Nucl Med 1:90–106.

    Google Scholar 

  48. Harbert JC (1972). Cisternography and Hydrocephalus. A Symposium. Springfield, IL: Charles C. Thomas.

    Google Scholar 

  49. Hassin GB (1930). Hydrocephalus: studies of the pathology and pathogenesis, with remarks on the cerebrospinal fluid. Arch Neurol Psychiat 24:1164–1186.

    Google Scholar 

  50. Hassin GB, Oldberg E, Tinsley M (1937). Changes in the brain in plexectomized dogs: with comments on the cerebrospinal fluid. Arch Neurol Psychiat 38:1224–1239.

    Google Scholar 

  51. Heisey SR, Held D, Pappenheimer JR (1962). Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J Physiol 203:775–781.

    PubMed  CAS  Google Scholar 

  52. Hochwald GM, Lux WE Jr, Sahar A, Ransohoff J (1972). Experimental hydrocephalus. Changes in cerebrospinal fluid dynamics as a function of time. Arch Neurol 26:120–129.

    PubMed  CAS  Google Scholar 

  53. Hochwald GM, Wald A, Malhan C (1976). The sink action of cerebrospinal fluid volume flow. Effect on brain water content. Arch Neurol 33:339–344.

    PubMed  CAS  Google Scholar 

  54. Horstmann E (1954). Die Faserglia des Selachiergehins. Z Zellforsch 39:588–617.

    PubMed  CAS  Google Scholar 

  55. Hoff J, Barber R (1974). Transcerebral mantle pressure in normal pressure hydrocephalus. Arch Neurol 31:101–105.

    PubMed  CAS  Google Scholar 

  56. Hussey F, Schanzer B, Katzman R (1970). A simple constant-infusion manometric test for measurement of CSF absorption. II. Clinical studies. Neurology 20:665–680.

    PubMed  CAS  Google Scholar 

  57. Katzman R, Hussey F (1970). A simple constant-infusion manometric test for measurement of CSF absorption. I. Rationale and method. Neurology 20:534–544.

    PubMed  CAS  Google Scholar 

  58. Kety SS, Shenkin HA, Schmidt CF (1948). The effects of increased intracranial pressure on cerebral circulatory effects in man. J Clin Invest 27:493–499.

    Google Scholar 

  59. Kister SJ (1956). Carbonic anhydrase inhibition. VI. The effect of acetazolamide on cerebrospinal fluid flow. J Pharmacol 117:402–405.

    CAS  Google Scholar 

  60. Lakke JPW (1975). Detection of obstruction of the spinal canal by CSF manometry. In: Vinken PJ, Bruyn GW (eds.): Handbook of Clinical Neurology. Volume 19. Amsterdam: North Holland, pp. 91–123.

    Google Scholar 

  61. Langfitt TW (1975). Clinical methods for monitoring intracranial pressure and measuring cerebral blood flow. Clin Neurosurg 22:302–320.

    PubMed  CAS  Google Scholar 

  62. Langfitt TW, Kassell NF, Weinstein JD (1965). Cerebral blood flow with intracranial hypertension. Neurology 18:761–773.

    Google Scholar 

  63. Last RJ, Tompsett DH (1953). Casts of the cerebral ventricles. Br J Surg 40:525–543.

    PubMed  CAS  Google Scholar 

  64. Livingston RB (1964). Mechanics of cerebrospinal fluid. In: Ruch TC, Patton HD (eds.): Physiology and Biophysics. Philadelphia: W.B. Saunders Co., pp. 935–940.

    Google Scholar 

  65. Lorenzo AV, Bresnan MJ (1973). Deficit in cerebrospinal fluid absorption in patients with symptoms of normal pressure hydrocephalus. Devel Med Child Neurol (Suppl 15) 29:35–41.

    Google Scholar 

  66. Lorenzo AV, Bresnan MJ, Barlow CF (1974). Cerebrospinal fluid absorption deficit in normal pressure hydrocephalus. Arch Neurol 30:387–393.

    PubMed  CAS  Google Scholar 

  67. Lups, S, Haan AMFH (1954). The Cerebrospinal Fluid. Amsterdam: Elsevier.

    Google Scholar 

  68. Lundberg N (1960). Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiat Neurol Scand Suppl 149:1–193.

    Google Scholar 

  69. Lundberg N, Cronquist S, Kjallquist A (1968). Clinical investigations on inter-relations between intracranial pressure and intracranial hemodynamics. Prog Brain Res 30:69–81.

    PubMed  CAS  Google Scholar 

  70. Lundberg N, Ponten U, Brock M (eds.) (1975). Intracranial Pressure: Volume II. New York: Springer-Verlag.

    Google Scholar 

  71. Mann JD, Johnson RN, Butler AB, Bass NH (1979). Impairment of cerebrospinal fluid circulatory dynamics in pseudotumor cerebri and response to steroid treatment. Neurology 29:550.

    Google Scholar 

  72. Maren TH, Broder LS (1970). The role of carbonic anhydrase in anion secretion into cerebrospinal fluid. J Pharmacol Exper Therap 172:197–202.

    CAS  Google Scholar 

  73. Masserman JH (1935). Cerebrospinal hydrodynamics. Studies of the volume elasticity of the human ventriculo-subarachnoid system. J Comp Neurol 61:543–552.

    Google Scholar 

  74. Matsuda M, Yoneda S, Handa H, Gotoh H (1979). Cerebral hemodynamic changes during plateau waves in brain-tumor patients. J Neurosurg 50:483–488.

    PubMed  CAS  Google Scholar 

  75. Maynard EA, Schultz RL, Pease DC (1957). Electron microscopy of the vascular bed of rat cerebral cortex. Am J Anat 100:409–434.

    PubMed  CAS  Google Scholar 

  76. McCarthy KD, Reed DJ (1974). The effect of acetazolamide and furosemide on cerebrospinal fluid production and choroid plexus carbonic anhydrase activity. J Pharmacol Exper Therap 189:194–201.

    CAS  Google Scholar 

  77. Milhorat TH (1972). Hydrocephalus and the Cerebrospinal Fluid. Baltimore: Williams & Wilkins.

    Google Scholar 

  78. Milien JW, Woollam DHM (1961). Observations on the nature of the pia mater. Brain 84:514–520.

    Google Scholar 

  79. Milien JW, Woollam DHM (1962). The Anatomy of the Cerebrospinal Fluid. London: Oxford University Press.

    Google Scholar 

  80. Miller JD (1975). Volume and pressure in the cerebrospinal axis. Clin Neurosurg 22:76–105.

    PubMed  CAS  Google Scholar 

  81. Millhouse OE (1975). Lining of the third ventricle in the rat. In: Knigge KM, Scott DE, Kobaysashi H, Ishii S (eds.): Brain-Endocrine Interaction. II. The Ventricular System in Neuroendocrine Mechanisms. Basel: S. Karger, pp. 9–18.

    Google Scholar 

  82. Neblett CR, McNeel DP, Waltz TA Jr, Harrison GM (1972). Effect of cardiac glycosides on human cerebrospinal fluid production. Lancet 2:1008–1009.

    PubMed  CAS  Google Scholar 

  83. O’Connell JEA (1943). The vascular factor in intracranial pressure and the maintenance of the CSF circulation. Brain 66:204–228.

    Google Scholar 

  84. Ommaya AK, Corrao P, Letcher FS (1973). Head injury in the chimpanzee. I. Biodynamics of traumatic unconsciousness. J Neurosurg 39:152–166.

    PubMed  CAS  Google Scholar 

  85. Paccioni A (1705). Dissertatio epistolaris ad Lucam Schroeckium de Glandulis Conglobatis durae Miningis Humanae. Rome.

    Google Scholar 

  86. Pease DC, Schultz RL (1958). Electron miscroscopy of rat cranial meninges. Am J Anat 118:891–904.

    Google Scholar 

  87. Porter JC, Ben-Jonathon N, Oliver C, Eskay RL (1975). Secretion of releasing hormones and their transport from CSF to hypophyseal portal blood. In: Knigge KM, Scott DE, Kobayashi H, Ishii S (eds.): Brain-Endocrine Interaction. II. The Ventricular System in Neuroendocrine Mechanisms. Basal: S. Karger, pp. 295–305.

    Google Scholar 

  88. Reed DJ (1969). The effects of furosemide on cerebrospinal fluid flow. Arch Int Pharmacodyn 178:324–330.

    PubMed  CAS  Google Scholar 

  89. Rieselbach RE, Di Chiro G, Freireich EJ, Rall DP (1962). Subarachnoid distribution of drugs after lumbar injection. N Engl J Med 267:1273–1278.

    PubMed  CAS  Google Scholar 

  90. Rogers L, West CM (1931). The foramen of Magendie. J Anat 65:457–467.

    PubMed  CAS  Google Scholar 

  91. Rougemont J de, Ames A III, Nesbett FB, Hofmann HF (1960). Fluid formed by choroid plexus. A technique for its collection and a comparison of its electrolyte composition with serum and cisternal fluids. J Neurophysiol 23:485–495.

    PubMed  Google Scholar 

  92. Rubin RC, Henderson ES, Ommaya AK, Walker MD, Rall DP (1966). The production of cerebrospinal fluid in man and its modification by acetazolamide. J Neurosurg 25:430–436.

    PubMed  CAS  Google Scholar 

  93. Russell DS (1949). Observation on the Pathology of Hydrocephalus. Medical Research Council Special Report Series, No. 265. London: His Majesty’s Stationery Office.

    Google Scholar 

  94. Sachs E, Wilkins H, Sams CF (1930). Studies on cerebrospinal circulation by a new method. Arch Neurol Psychiat 23:130–151.

    Google Scholar 

  95. Sahar A (1972). The effect of pressure on the production of cerebrospinal fluid by the choroid plexus. J Neurol Sci 16:49–58.

    PubMed  CAS  Google Scholar 

  96. Sahar A, Tsipstein E (1978). Effects of mannitol and furosemide on the rate of formation of cerebrospinal fluid. Exp Neurol 60:584–591.

    PubMed  CAS  Google Scholar 

  97. Schaltenbrand G, Bailey P (1928). Die perivaskuläre Piaglialmembran des Gehirns. J Psychol Neurol (Lpz) 35:199–278.

    Google Scholar 

  98. Schaltenbrand G, Putnam T (1927). Untersuchungen zum Kreislauf der Liquor cerebrospinalis mit Hilfe intravenöse Fluorescineinspritzungen. Dtsch Z Nervenheilk 96:123–132.

    Google Scholar 

  99. Schapiro B (1931). Uber die Innervation des Plexus chorioideus. Z ges Neurol Psychiat 136:539–546.

    Google Scholar 

  100. Schmid H (1929). Anatomischer Bau und Entwicklung der Plexus chorioidei in der Wirbeltierreihe und beim Menschen. Z mikr-anat Forsch 16:413–498.

    Google Scholar 

  101. Schott GD, Holt D (1974). Digoxin in benign intracranial hypertension. Lancet 1:358–359.

    PubMed  CAS  Google Scholar 

  102. Shabo AL, Maxwell DS (1968). The morphology of the arachnoid villi: a light and electron-microscopic study in the monkey. J Neurosurg 29:451–463.

    Google Scholar 

  103. Shanthaveerappa TR, Bourne GH (1934). Arachnoid villi in the optic nerve of man and the monkey. Exp Eye Res 3:31–35.

    Google Scholar 

  104. Sjoqvist O (1937). Beobachtungen Über die Liqurosekretion beim Menschen. Zentralbl Neurochir 2:8–17.

    Google Scholar 

  105. Solomon HC, Thompson LJ, Pfeiffer HM (1922). Circulation of phenol-sulphone-phthalein in the cerebrospinal system. JAMA 79:1014–1020.

    CAS  Google Scholar 

  106. Sweet WH, Brownell GL, Scholl JA, Bowsher DR, Benda P, Stickley EE (1954). The formation, flow and absorption of cerebrospinal fluid; newer concepts based on studies with isotopes. Res Publ Assoc Res Nerv Ment Dis 34:101–159.

    Google Scholar 

  107. Tripathi BS, Tripathi RC (1974). Vacuolar transcellular channels as a drainage pathway for cerebrospinal fluid. J Physiol 239:195–206.

    PubMed  CAS  Google Scholar 

  108. Tripathi RC (1973). Ultrastructure of the arachnoid mater in relation to outflow of cerebrospinal fluid. A new concept. Lancet 2:8–11.

    PubMed  CAS  Google Scholar 

  109. Trotter JL, Luzecky M, Siegel BA, Gado M (1974). Cerebrospinal fluid infusion test. Identification of artifacts and correlation with cisternography and pneumoencephalography. Neurology 24:181–186.

    PubMed  CAS  Google Scholar 

  110. Tschirigi RD, Frost RW, Taylor JL (1954). Inhibition of cerebrospinal fluid formation by a carbonic anhydrase inhibitor, 2-acetylamino-l,3,4-thiodiazole-5-sulfonamide (Diamox). Proc Soc Exp Biol Med 87:373–376.

    Google Scholar 

  111. Tsuker M (1947). Innervation of the choroid plexus. Arch Neurol Psychiat 58:474–483.

    PubMed  CAS  Google Scholar 

  112. Vates TS Jr, Bonting SL, Oppelt WW (1964). Na-K activated adenosine triphosphatase formation of cerebrospinal fluid in the cat. Am J Physiol 206:1165–1172.

    PubMed  CAS  Google Scholar 

  113. Voetmann E (1949). On the structure and surface area of the human choroid plexuses. Acta Anat Suppl 10:1–116.

    Google Scholar 

  114. Weed LH (1914). Studies on cerebrospinal fluid. No. III. The pathways of escape from the subarachnoid spaces with particular reference to the arachnoid villi. J Med Res 31:51–92.

    PubMed  CAS  Google Scholar 

  115. Weed LH (1914). Studies on cerebrospinal fluid. No. IV. The dual source of cerebrospinal fluid. J Med Res 31:93–117.

    PubMed  CAS  Google Scholar 

  116. Weed LH (1920). The experimental production of internal hydrocephalus. Contr Embryol Carnegie Instn 9:425–446.

    Google Scholar 

  117. Weed LH (1922). The cerebrospinal fluid. Physiol Rev 2:171–203.

    Google Scholar 

  118. Weed LH (1923). The absorption of cerebrospinal fluid. Am J Anat 31:191–221.

    CAS  Google Scholar 

  119. Welch K (1975). The principle of physiology of the cerebrospinal fluid in relation to hydrocephalus including normal pressure hydrocephalus. In:Friedlander WJ (ed.): Advances in Neurology. New York: Raven Press, pp. 345–375.

    Google Scholar 

  120. Welch K, Friedman V (1960). The cerebrospinal fluid valves. Brain 83:454–469.

    PubMed  CAS  Google Scholar 

  121. Welch K, Pollay M (1961). Perfusion of particles through arachnoid villi of the monkey. Am J Physiol 201:651–654.

    PubMed  CAS  Google Scholar 

  122. Welch K, Pollary M (1963). The spinal arachnoid villi of the monkeys Cercopithecus aet-hiops sabaeus and Macaca irus. Anat Rec 145:43–48.

    PubMed  CAS  Google Scholar 

  123. Wolff HG, Forbes HS (1928). The cerebral circulation. V. Observation of the pial circulation during changes in intracranial pressure. Arch Neurol Psychiat 20:1035–1047.

    Google Scholar 

  124. Wolinsky JS, Barnes BD, Margolis MT (1973). Diagnostic tests in normal pressure hydrocephalus. Neurology 23:706–713.

    PubMed  CAS  Google Scholar 

  125. Woollam DHM, Milien JW (1953). Anatomical considerations in the pathology of stenosis of the cerebral aqueduct. Brain 76:104–112.

    PubMed  CAS  Google Scholar 

  126. Wright EM (1972). Mechanism of ion transport across the choroid plexus. J Physiol (Lond) 226:545–571.

    CAS  Google Scholar 

  127. Wright EM (1978). Transport processes in the formation of the cerebrospinal fluid. Rev Physiol Biochem Pharmacol 83:1–34.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Brumback, R.A. (1989). Anatomic and Physiologic Aspects of the Cerebrospinal Fluid Space. In: Herndon, R.M., Brumback, R.A. (eds) The Cerebrospinal Fluid. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1591-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1591-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8881-7

  • Online ISBN: 978-1-4613-1591-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics