Anatomic and Physiologic Aspects of the Cerebrospinal Fluid Space

  • Roger A. Brumback


The cerebrospinal fluid is the clear colorless fluid that fills the ventricular cavities and the subarachnoid space. The ventricles are the vestiges of the hollow tube that constitutes the central nervous system during embryonic development, and the subarachnoid space is the space over the exterior of the brain between the arachnoid membrane and the pia mater.


Subarachnoid Space Choroid Plexus Fourth Ventricle Cerebrospinal Fluid Pressure Arachnoid Granulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander L (1931). Die Anatomie der Seitentaschen der vierten Hirnkammeries. Z ges Anat l Z Anat EntwGesch 95:531–707.Google Scholar
  2. 2.
    Alksne JF, Lovings ET (1972). Functional ultrastructure of the arachnoid villus. Arch Neurol 27:371–377.PubMedGoogle Scholar
  3. 3.
    Ames A III, Sakanoue M, Endo S (1964). Na, K, Ca, Mg and Cl concentrations in choroid plexus fluid and cisternal fluid compared with plasma ultrafiltrate. J Neurophysiol 27:672–681.PubMedGoogle Scholar
  4. 4.
    Ames A III, Higashi K, Nesbett FB (1965). Relation of potassium concentration in choroid plexus fluid to that in plasma. J Physiol 181:506–515.PubMedGoogle Scholar
  5. 5.
    Ames A III, Higashi K, Nesbett FB (1965). Effects of pCO2, acetazolamide and ouabain on composition of choroid plexus fluid. J Physiol 181:516–524.PubMedGoogle Scholar
  6. 6.
    Askanazy M (1914). Zur Physiologie und Pathologie der Plexus chorioidei. Verh dtsch path Ges 17:85–103.Google Scholar
  7. 7.
    Bakay L von (1941). Die Innervation der Pia Mater, der Plexus chorioideus und der Hirngefässen mit Rücksicht auf den Einfluss des sympatiscchen Nervensystems auf die Liquorsekre-tion. Arch Psychiat Nervenkr 113:412–427.Google Scholar
  8. 8.
    Barr ML (1948). Observations on the foramen of Magendie in a series of human brains. Brain 71:281–289.PubMedGoogle Scholar
  9. 9.
    Bennett MVL (1969). Electrical impedance of brain surfaces. Brain Res 15:584–590.PubMedGoogle Scholar
  10. 10.
    Berger MP, Brumback RA (1978). Pathophysiologic mechanisms of hydrocephalus. J Clin Psychiat 39:143–151.Google Scholar
  11. 11.
    Bering EA Jr (1955). Choroid plexus and arterial pulsation of cerebrospinal fluid. Demonstration of the choroid plexus as a cerebrospinal fluid pump. Arch Neurol Psychiat 73:165–172.Google Scholar
  12. 12.
    Bering EA Jr (1958). Problems of the dynamics of the cerebrospinal fluid with particular reference to the formation of cerebrospinal fluid and its relationship to cerebral metabolism. Clin Neurosurg 5:77–98.Google Scholar
  13. 13.
    Bering EA Jr (1962). Circulation of the cerebrospinal fluid. Demonstration of the choroid plexus as the generator of the force for flow of fluid and ventricular enlargement. J Neurosurg 19:405–413.PubMedGoogle Scholar
  14. 14.
    Bering EA Jr, Sato O (1963). Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20:1050–1063.PubMedGoogle Scholar
  15. 15.
    Bickers DS, Adams RD (1949). Hereditary stenosis of the aqueduct of Sylvius as a cause of congenital hydrocephalus. Brain 72:246–262.PubMedGoogle Scholar
  16. 17.
    Birzis L, Carter CH, Maren TH (1958). Effect of acetazolamide on CSF pressure and electrolytes in hydrocephalus. Neurology 8:522–528.PubMedGoogle Scholar
  17. 18.
    Blake JA (1900). The roof and lateral recesses of the fourth ventricle considered morphologically and embryologically. J Comp Neurol 10:79–108.Google Scholar
  18. 19.
    Brightman MW, Prescott L, Reese TS (1975). Intercellular junctions of special ependyma. In: Knigge KM, Scott DE, Kobayashi H, Ishii S (eds.): Brain-Endocrine Interaction. II. The Ventricular System in Neuroendocrine Mechanisms. Basal: S. Karger, pp. 146–165.Google Scholar
  19. 20.
    Buhrley LE, Reed DJ (1972). The effect of furosemide on sodium-22 uptake into cerebrospinal fluid and brain. Exp Brain Res 14:503–510.PubMedGoogle Scholar
  20. 21.
    Calabrese VP, Selhorst JB, Harbison JW (1978). Cerebrospinal fluid infusion test in pseudotumor cerebri. Ann Neurol 4:173.Google Scholar
  21. 22.
    Caldareli M, Di Rocco C, Rossi GF (1979). Lumbar subarachnoid infusion test in paediatric neurosurgery. Devel Med Child Neurol 21:71–82.Google Scholar
  22. 23.
    Clark WE LeGros (1920). On the Pacchionian bodies. J Anat 55:40–48.Google Scholar
  23. 24.
    Clark SL (1928). Nerve endings in the choroid plexus of the fourth ventricle. J Comp Neurol 47:1–21.Google Scholar
  24. 25.
    Clark SL (1934). Innervation of the chorioid plexuses and the blood vessels within the central nervous system. J Comp Neurol 60:21–35.Google Scholar
  25. 26.
    Cooper ERA (1958). Nerves of the meninges and the choroid plexus. Acta Anat 33:298–318.PubMedGoogle Scholar
  26. 27.
    Coupin F (1920). Sur l’absence des trous de Magendie et de Luschka chez quelques mammifères. CR Soc Biol (Paris) 83:954–956.Google Scholar
  27. 28.
    Cserr HF (1971). Physiology of the choroid plexus. Physiol Rev 51:273–311.PubMedGoogle Scholar
  28. 29.
    Curl FD, Pollay M (1968). Transport of water and electrolytes between brain and ventricular fluid in the rabbit. Exp Neurol 20:558–574.PubMedGoogle Scholar
  29. 30.
    Cutler RWP, Page L, Galicich J, Watters GV (1968). Formation and absorption of cerebrospinal fluid in man. Brain 91:707–720.PubMedGoogle Scholar
  30. 31.
    Dandy WE (1919). Experimental hydrocephalus. Ann Surg 70:129–142.PubMedGoogle Scholar
  31. 32.
    Dandy WE, Blackfan KD (1914). Internal hydrocephalus. An experimental, clinical and pathological study. Am J Dis Child 8:406–482.Google Scholar
  32. 33.
    Davidoff LM, Dyke CG (1951). The Normal Encephalogram. 3 edition. Philadelphia: Lea & Febiger.Google Scholar
  33. 34.
    Davson H (1967). Physiology of the Cerebrospinal Fluid. Boston: Little, Brown and Co.Google Scholar
  34. 35.
    Davson H, Luck CP (1957). The effect of acetazolamide on the chemical composition of the aqueous humour and cerebrospinal fluid of some mammalian species and on the rate of turnover of 24Na in these fluids. J Physiol (Lond) 137:279–293.Google Scholar
  35. 36.
    Davson H, Segal MB (1970). The effects of some inhibitors and accelerators of sodium transport in the turnover of 22Na in the cerebrospinal fluid and the brain. J Physiol (Lond) 209:131–153.Google Scholar
  36. 37.
    Di Chiro G (1964). Movement of the cerebrospinal fluid in human beings. Nature 204:290–291.Google Scholar
  37. 38.
    Di Chiro G, Reames PM, Mattews WB (1964). RISA ventriculography and RISA cisternography. Neurology 14:185–191.Google Scholar
  38. 39.
    DiMattio J, Hochwald GM, Malhan C, Wald A (1975). Effects of changes in serum osmo-larity on bulk flow of fluid into cerebral ventricles and on brain water content. Pflugers Arch 359:253–264.PubMedGoogle Scholar
  39. 40.
    Elman R (1923). Spinal arachnoid granulations with especial reference to the cerebrospinal fluid. Bull Johns Hopkins Hosp 34:99–104.Google Scholar
  40. 41.
    Elvidge AR, Branch CL, Thompson GB (1957). Observations in a case of hydrocephalus treated with Diamox. J Neurosurg 14:628–638.PubMedGoogle Scholar
  41. 42.
    Epstein BS (1950). Pneumoencephalographic study of normal third and fourth cerebral ventricles and aqueduct of Sylvius. Am J Roentgenol 63:204–209.Google Scholar
  42. 43.
    Grundy HF (1962). Circulation of cerebrospinal fluid in the spinal region of the cat. J Physiol 163:457–465.PubMedGoogle Scholar
  43. 44.
    Fisher RA, Openhaver JH (1959). The metabolic activity of the choroid plexus. J Neurosurg 16:167–176.PubMedGoogle Scholar
  44. 45.
    Fishman RA (1959). Factors influencing the exchange of sodium between plasma and cerebrospinal fluid. J Clin Invest 38:1698–1708.PubMedGoogle Scholar
  45. 46.
    Frazier CH, Peet MM (1914). Factors of influence in the origin and circulation of cerebrospinal fluid. Am J Physiol 35:268–282.Google Scholar
  46. 47.
    Fremont-Smith F (1927). The nature of the cerebrospinal fluid. Arch Neurol Psychiat 17:317–331.Google Scholar
  47. 48.
    Harbert JC (1971). Radionuclide cisternography. Sem Nucl Med 1:90–106.Google Scholar
  48. 49.
    Harbert JC (1972). Cisternography and Hydrocephalus. A Symposium. Springfield, IL: Charles C. Thomas.Google Scholar
  49. 50.
    Hassin GB (1930). Hydrocephalus: studies of the pathology and pathogenesis, with remarks on the cerebrospinal fluid. Arch Neurol Psychiat 24:1164–1186.Google Scholar
  50. 51.
    Hassin GB, Oldberg E, Tinsley M (1937). Changes in the brain in plexectomized dogs: with comments on the cerebrospinal fluid. Arch Neurol Psychiat 38:1224–1239.Google Scholar
  51. 52.
    Heisey SR, Held D, Pappenheimer JR (1962). Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J Physiol 203:775–781.PubMedGoogle Scholar
  52. 53.
    Hochwald GM, Lux WE Jr, Sahar A, Ransohoff J (1972). Experimental hydrocephalus. Changes in cerebrospinal fluid dynamics as a function of time. Arch Neurol 26:120–129.PubMedGoogle Scholar
  53. 54.
    Hochwald GM, Wald A, Malhan C (1976). The sink action of cerebrospinal fluid volume flow. Effect on brain water content. Arch Neurol 33:339–344.PubMedGoogle Scholar
  54. 55.
    Horstmann E (1954). Die Faserglia des Selachiergehins. Z Zellforsch 39:588–617.PubMedGoogle Scholar
  55. 56.
    Hoff J, Barber R (1974). Transcerebral mantle pressure in normal pressure hydrocephalus. Arch Neurol 31:101–105.PubMedGoogle Scholar
  56. 57.
    Hussey F, Schanzer B, Katzman R (1970). A simple constant-infusion manometric test for measurement of CSF absorption. II. Clinical studies. Neurology 20:665–680.PubMedGoogle Scholar
  57. 58.
    Katzman R, Hussey F (1970). A simple constant-infusion manometric test for measurement of CSF absorption. I. Rationale and method. Neurology 20:534–544.PubMedGoogle Scholar
  58. 59.
    Kety SS, Shenkin HA, Schmidt CF (1948). The effects of increased intracranial pressure on cerebral circulatory effects in man. J Clin Invest 27:493–499.Google Scholar
  59. 60.
    Kister SJ (1956). Carbonic anhydrase inhibition. VI. The effect of acetazolamide on cerebrospinal fluid flow. J Pharmacol 117:402–405.Google Scholar
  60. 61.
    Lakke JPW (1975). Detection of obstruction of the spinal canal by CSF manometry. In: Vinken PJ, Bruyn GW (eds.): Handbook of Clinical Neurology. Volume 19. Amsterdam: North Holland, pp. 91–123.Google Scholar
  61. 62.
    Langfitt TW (1975). Clinical methods for monitoring intracranial pressure and measuring cerebral blood flow. Clin Neurosurg 22:302–320.PubMedGoogle Scholar
  62. 63.
    Langfitt TW, Kassell NF, Weinstein JD (1965). Cerebral blood flow with intracranial hypertension. Neurology 18:761–773.Google Scholar
  63. 64.
    Last RJ, Tompsett DH (1953). Casts of the cerebral ventricles. Br J Surg 40:525–543.PubMedGoogle Scholar
  64. 65.
    Livingston RB (1964). Mechanics of cerebrospinal fluid. In: Ruch TC, Patton HD (eds.): Physiology and Biophysics. Philadelphia: W.B. Saunders Co., pp. 935–940.Google Scholar
  65. 66.
    Lorenzo AV, Bresnan MJ (1973). Deficit in cerebrospinal fluid absorption in patients with symptoms of normal pressure hydrocephalus. Devel Med Child Neurol (Suppl 15) 29:35–41.Google Scholar
  66. 67.
    Lorenzo AV, Bresnan MJ, Barlow CF (1974). Cerebrospinal fluid absorption deficit in normal pressure hydrocephalus. Arch Neurol 30:387–393.PubMedGoogle Scholar
  67. 68.
    Lups, S, Haan AMFH (1954). The Cerebrospinal Fluid. Amsterdam: Elsevier.Google Scholar
  68. 69.
    Lundberg N (1960). Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiat Neurol Scand Suppl 149:1–193.Google Scholar
  69. 70.
    Lundberg N, Cronquist S, Kjallquist A (1968). Clinical investigations on inter-relations between intracranial pressure and intracranial hemodynamics. Prog Brain Res 30:69–81.PubMedGoogle Scholar
  70. 71.
    Lundberg N, Ponten U, Brock M (eds.) (1975). Intracranial Pressure: Volume II. New York: Springer-Verlag.Google Scholar
  71. 72.
    Mann JD, Johnson RN, Butler AB, Bass NH (1979). Impairment of cerebrospinal fluid circulatory dynamics in pseudotumor cerebri and response to steroid treatment. Neurology 29:550.Google Scholar
  72. 73.
    Maren TH, Broder LS (1970). The role of carbonic anhydrase in anion secretion into cerebrospinal fluid. J Pharmacol Exper Therap 172:197–202.Google Scholar
  73. 74.
    Masserman JH (1935). Cerebrospinal hydrodynamics. Studies of the volume elasticity of the human ventriculo-subarachnoid system. J Comp Neurol 61:543–552.Google Scholar
  74. 75.
    Matsuda M, Yoneda S, Handa H, Gotoh H (1979). Cerebral hemodynamic changes during plateau waves in brain-tumor patients. J Neurosurg 50:483–488.PubMedGoogle Scholar
  75. 76.
    Maynard EA, Schultz RL, Pease DC (1957). Electron microscopy of the vascular bed of rat cerebral cortex. Am J Anat 100:409–434.PubMedGoogle Scholar
  76. 77.
    McCarthy KD, Reed DJ (1974). The effect of acetazolamide and furosemide on cerebrospinal fluid production and choroid plexus carbonic anhydrase activity. J Pharmacol Exper Therap 189:194–201.Google Scholar
  77. 78.
    Milhorat TH (1972). Hydrocephalus and the Cerebrospinal Fluid. Baltimore: Williams & Wilkins.Google Scholar
  78. 79.
    Milien JW, Woollam DHM (1961). Observations on the nature of the pia mater. Brain 84:514–520.Google Scholar
  79. 80.
    Milien JW, Woollam DHM (1962). The Anatomy of the Cerebrospinal Fluid. London: Oxford University Press.Google Scholar
  80. 81.
    Miller JD (1975). Volume and pressure in the cerebrospinal axis. Clin Neurosurg 22:76–105.PubMedGoogle Scholar
  81. 82.
    Millhouse OE (1975). Lining of the third ventricle in the rat. In: Knigge KM, Scott DE, Kobaysashi H, Ishii S (eds.): Brain-Endocrine Interaction. II. The Ventricular System in Neuroendocrine Mechanisms. Basel: S. Karger, pp. 9–18.Google Scholar
  82. 83.
    Neblett CR, McNeel DP, Waltz TA Jr, Harrison GM (1972). Effect of cardiac glycosides on human cerebrospinal fluid production. Lancet 2:1008–1009.PubMedGoogle Scholar
  83. 84.
    O’Connell JEA (1943). The vascular factor in intracranial pressure and the maintenance of the CSF circulation. Brain 66:204–228.Google Scholar
  84. 85.
    Ommaya AK, Corrao P, Letcher FS (1973). Head injury in the chimpanzee. I. Biodynamics of traumatic unconsciousness. J Neurosurg 39:152–166.PubMedGoogle Scholar
  85. 86.
    Paccioni A (1705). Dissertatio epistolaris ad Lucam Schroeckium de Glandulis Conglobatis durae Miningis Humanae. Rome.Google Scholar
  86. 87.
    Pease DC, Schultz RL (1958). Electron miscroscopy of rat cranial meninges. Am J Anat 118:891–904.Google Scholar
  87. 88.
    Porter JC, Ben-Jonathon N, Oliver C, Eskay RL (1975). Secretion of releasing hormones and their transport from CSF to hypophyseal portal blood. In: Knigge KM, Scott DE, Kobayashi H, Ishii S (eds.): Brain-Endocrine Interaction. II. The Ventricular System in Neuroendocrine Mechanisms. Basal: S. Karger, pp. 295–305.Google Scholar
  88. 89.
    Reed DJ (1969). The effects of furosemide on cerebrospinal fluid flow. Arch Int Pharmacodyn 178:324–330.PubMedGoogle Scholar
  89. 90.
    Rieselbach RE, Di Chiro G, Freireich EJ, Rall DP (1962). Subarachnoid distribution of drugs after lumbar injection. N Engl J Med 267:1273–1278.PubMedGoogle Scholar
  90. 91.
    Rogers L, West CM (1931). The foramen of Magendie. J Anat 65:457–467.PubMedGoogle Scholar
  91. 92.
    Rougemont J de, Ames A III, Nesbett FB, Hofmann HF (1960). Fluid formed by choroid plexus. A technique for its collection and a comparison of its electrolyte composition with serum and cisternal fluids. J Neurophysiol 23:485–495.PubMedGoogle Scholar
  92. 93.
    Rubin RC, Henderson ES, Ommaya AK, Walker MD, Rall DP (1966). The production of cerebrospinal fluid in man and its modification by acetazolamide. J Neurosurg 25:430–436.PubMedGoogle Scholar
  93. 94.
    Russell DS (1949). Observation on the Pathology of Hydrocephalus. Medical Research Council Special Report Series, No. 265. London: His Majesty’s Stationery Office.Google Scholar
  94. 95.
    Sachs E, Wilkins H, Sams CF (1930). Studies on cerebrospinal circulation by a new method. Arch Neurol Psychiat 23:130–151.Google Scholar
  95. 96.
    Sahar A (1972). The effect of pressure on the production of cerebrospinal fluid by the choroid plexus. J Neurol Sci 16:49–58.PubMedGoogle Scholar
  96. 97.
    Sahar A, Tsipstein E (1978). Effects of mannitol and furosemide on the rate of formation of cerebrospinal fluid. Exp Neurol 60:584–591.PubMedGoogle Scholar
  97. 98.
    Schaltenbrand G, Bailey P (1928). Die perivaskuläre Piaglialmembran des Gehirns. J Psychol Neurol (Lpz) 35:199–278.Google Scholar
  98. 99.
    Schaltenbrand G, Putnam T (1927). Untersuchungen zum Kreislauf der Liquor cerebrospinalis mit Hilfe intravenöse Fluorescineinspritzungen. Dtsch Z Nervenheilk 96:123–132.Google Scholar
  99. 100.
    Schapiro B (1931). Uber die Innervation des Plexus chorioideus. Z ges Neurol Psychiat 136:539–546.Google Scholar
  100. 101.
    Schmid H (1929). Anatomischer Bau und Entwicklung der Plexus chorioidei in der Wirbeltierreihe und beim Menschen. Z mikr-anat Forsch 16:413–498.Google Scholar
  101. 102.
    Schott GD, Holt D (1974). Digoxin in benign intracranial hypertension. Lancet 1:358–359.PubMedGoogle Scholar
  102. 103.
    Shabo AL, Maxwell DS (1968). The morphology of the arachnoid villi: a light and electron-microscopic study in the monkey. J Neurosurg 29:451–463.Google Scholar
  103. 104.
    Shanthaveerappa TR, Bourne GH (1934). Arachnoid villi in the optic nerve of man and the monkey. Exp Eye Res 3:31–35.Google Scholar
  104. 105.
    Sjoqvist O (1937). Beobachtungen Über die Liqurosekretion beim Menschen. Zentralbl Neurochir 2:8–17.Google Scholar
  105. 106.
    Solomon HC, Thompson LJ, Pfeiffer HM (1922). Circulation of phenol-sulphone-phthalein in the cerebrospinal system. JAMA 79:1014–1020.Google Scholar
  106. 107.
    Sweet WH, Brownell GL, Scholl JA, Bowsher DR, Benda P, Stickley EE (1954). The formation, flow and absorption of cerebrospinal fluid; newer concepts based on studies with isotopes. Res Publ Assoc Res Nerv Ment Dis 34:101–159.Google Scholar
  107. 108.
    Tripathi BS, Tripathi RC (1974). Vacuolar transcellular channels as a drainage pathway for cerebrospinal fluid. J Physiol 239:195–206.PubMedGoogle Scholar
  108. 109.
    Tripathi RC (1973). Ultrastructure of the arachnoid mater in relation to outflow of cerebrospinal fluid. A new concept. Lancet 2:8–11.PubMedGoogle Scholar
  109. 110.
    Trotter JL, Luzecky M, Siegel BA, Gado M (1974). Cerebrospinal fluid infusion test. Identification of artifacts and correlation with cisternography and pneumoencephalography. Neurology 24:181–186.PubMedGoogle Scholar
  110. 111.
    Tschirigi RD, Frost RW, Taylor JL (1954). Inhibition of cerebrospinal fluid formation by a carbonic anhydrase inhibitor, 2-acetylamino-l,3,4-thiodiazole-5-sulfonamide (Diamox). Proc Soc Exp Biol Med 87:373–376.Google Scholar
  111. 112.
    Tsuker M (1947). Innervation of the choroid plexus. Arch Neurol Psychiat 58:474–483.PubMedGoogle Scholar
  112. 113.
    Vates TS Jr, Bonting SL, Oppelt WW (1964). Na-K activated adenosine triphosphatase formation of cerebrospinal fluid in the cat. Am J Physiol 206:1165–1172.PubMedGoogle Scholar
  113. 114.
    Voetmann E (1949). On the structure and surface area of the human choroid plexuses. Acta Anat Suppl 10:1–116.Google Scholar
  114. 115.
    Weed LH (1914). Studies on cerebrospinal fluid. No. III. The pathways of escape from the subarachnoid spaces with particular reference to the arachnoid villi. J Med Res 31:51–92.PubMedGoogle Scholar
  115. 116.
    Weed LH (1914). Studies on cerebrospinal fluid. No. IV. The dual source of cerebrospinal fluid. J Med Res 31:93–117.PubMedGoogle Scholar
  116. 117.
    Weed LH (1920). The experimental production of internal hydrocephalus. Contr Embryol Carnegie Instn 9:425–446.Google Scholar
  117. 118.
    Weed LH (1922). The cerebrospinal fluid. Physiol Rev 2:171–203.Google Scholar
  118. 119.
    Weed LH (1923). The absorption of cerebrospinal fluid. Am J Anat 31:191–221.Google Scholar
  119. 120.
    Welch K (1975). The principle of physiology of the cerebrospinal fluid in relation to hydrocephalus including normal pressure hydrocephalus. In:Friedlander WJ (ed.): Advances in Neurology. New York: Raven Press, pp. 345–375.Google Scholar
  120. 121.
    Welch K, Friedman V (1960). The cerebrospinal fluid valves. Brain 83:454–469.PubMedGoogle Scholar
  121. 122.
    Welch K, Pollay M (1961). Perfusion of particles through arachnoid villi of the monkey. Am J Physiol 201:651–654.PubMedGoogle Scholar
  122. 123.
    Welch K, Pollary M (1963). The spinal arachnoid villi of the monkeys Cercopithecus aet-hiops sabaeus and Macaca irus. Anat Rec 145:43–48.PubMedGoogle Scholar
  123. 124.
    Wolff HG, Forbes HS (1928). The cerebral circulation. V. Observation of the pial circulation during changes in intracranial pressure. Arch Neurol Psychiat 20:1035–1047.Google Scholar
  124. 125.
    Wolinsky JS, Barnes BD, Margolis MT (1973). Diagnostic tests in normal pressure hydrocephalus. Neurology 23:706–713.PubMedGoogle Scholar
  125. 126.
    Woollam DHM, Milien JW (1953). Anatomical considerations in the pathology of stenosis of the cerebral aqueduct. Brain 76:104–112.PubMedGoogle Scholar
  126. 127.
    Wright EM (1972). Mechanism of ion transport across the choroid plexus. J Physiol (Lond) 226:545–571.Google Scholar
  127. 128.
    Wright EM (1978). Transport processes in the formation of the cerebrospinal fluid. Rev Physiol Biochem Pharmacol 83:1–34.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Roger A. Brumback

There are no affiliations available

Personalised recommendations