Advertisement

Leishmaniasis pp 659-665 | Cite as

Interrelations between Glucose and Alanine Catabolism, Ammonia Production, and the D-Lactate Pathway in Leishmania Braziliensis

  • J. J. Blum
  • D. G. Davis
  • T. N. Darling
  • R. E. London
Part of the NATO ASI Series book series (NSSA, volume 171)

Abstract

L. braziliensis promastigotes catabolize glucose to CO2 and release several incompletely oxidized products. These products, identified by NMR spectroscopy, include succinate, alanine, pyruvate, acetate, and lactate (Darling et al, 1987). Under anaerobic conditions, glycerol becomes a major product and lactate production increases, but glucose consumption decreases (“reverse” Pasteur effect). Enzymatic assays showed that the lactate formed is the D-stereoisomer, and that it is formed via methylglyoxal synthase and glyoxalases I and II (Darling and Blum, submitted for publication). D-lactate dehydrogenase does not appear to be present. The regulation and function of the methylglyoxal pathway in Leishmania are not yet known.

Keywords

Krebs Cycle Lactate Production Increase Unlabeled Glucose Alanine Production Leishmania Tropica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Darling, T. N., and Blum, J. J., 1987, In vitro reversible transformation of Leishmania braziliensis panamensis between promastigotes and ellipsoidal forms, J. Protozool., 34:166–168.PubMedCrossRefGoogle Scholar
  2. Darling, T. N., Davis, D. G., London, R. E., and Blum, J. J., 1987, Products of Leishmania braziliensis catabolism: Release of D-lactate and, under anaerobic conditions, glycerol, Proc. Natl. Acad. Sci. USA, In press.Google Scholar
  3. de los Santos, C., Buldain, G., Frydman, B., Cannata, J. J. B., and Cazzulo, J. J., 1985, Carbon-13-nuclear magnetic resonance analysis of [1-13C]glucose metabolism in Crithidia fasciculate. Evidence of CO2 fixation by phosphoenolpyruvate carboxykinase, Eur. J. Biochem., 149:421–429.PubMedCrossRefGoogle Scholar
  4. Keegan, F. P., Sansone, L., and Blum, J. J., 1987. Oxidation of glucose, ribose, alanine, and glutamate by Leishmania braziliensis panamensis, J. Protozool., 34:174–179.PubMedCrossRefGoogle Scholar
  5. Marr, J. J., 1980, Carbohydrate metabolism in Leishmania, in: “Biochemistry and Physiology of Protozoa”, 2nd edition, Vol. 3, Academic Press, NY.Google Scholar
  6. Pupkis, M. F., and Coombs, G. H., 1984, Purification and characterization of proteolytic enzymes of Leishmania mexicana mexicana amastigotes and promastigotes, J. Gen. Microbiol., 130:2375–2383.PubMedGoogle Scholar
  7. Ryley, J. F., 1956, Studies on the metabolism of the protozoa. 7. Comparative carbohydrate metabolism of eleven species of trypanosome, Biochem. J., 62:215–222.PubMedGoogle Scholar
  8. Simon, M. W., and Mukkada, A. J., 1983, Intracellular protein degradation in Leishmania tropica amastigotes, Molec. Biochem. Parasitol., 7:19–26.CrossRefGoogle Scholar
  9. Simon, M. W., Jayashimhulu, K., and Mukkada, A. J., 1983, The free amino acid pool in Leishmania tropica promastigotes, Molec. Biochem. Parasitol., 9:47–57.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • J. J. Blum
    • 1
  • D. G. Davis
    • 2
  • T. N. Darling
    • 1
  • R. E. London
    • 2
  1. 1.Department of PhysiologyDuke University Medical CenterDurhamUSA
  2. 2.National Institute of Environmental Health SciencesResearch Triangle ParkUSA

Personalised recommendations