Leishmaniasis pp 885-890 | Cite as

Effects of a Squalene-2,3-Epoxidase Inhibitor on Propagation and Sterol Biosynthesis of Leishmania Promastigotes and Amastigotes

  • David H. Beach
  • L. John Goad
  • Jonathan D. Berman
  • Thomas E. Ellenberger
  • Steven M. Beverley
  • George G. HolzJr.
Part of the NATO ASI Series book series (NSSA, volume 171)


A new class of antimycotic agents, the allylamines, are fungistatic or fungicidal for many different pathogenic dermatophytes and yeasts. Their primary mode of action is the inhibition of microsomal squalene-2,3-epoxidase, with accumulation of squalene and loss of cellular ergosterol accompanied by inhibition of growth and reproduction1. Cessation of cell growth and loss of viability coincide with the accumulation of squalene in some species (e.g. Candida parapsilosis), while in others (Candida albicans) complete growth inhibition requires the total cessation of ergosterol synthesis and minimum cellular ergosterol content1. The allylamines also demonstrate selective toxicity. Terbinafine SF 86–327, which is being developed for oral administration against systemic fungal infections, has a negligible effect on the squalene-2,3-epoxidase of vertebrate cholesterol biosynthesis at concentrations greater than the maximal serum concentrations that have been recorded in vitro1.


Cutaneous Leishmaniasis Free Sterol Candida Parapsilosis Sterol Biosynthesis Trypanosoma Brucei 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. S. Ryder, Biochemical mode of action of the allylamine antimycotic agents naftifine and SF 86–237, inIn vitro and in vivo evaluation of antifungal agents,” K. Iwata and H. Vanden Bossche, eds., Elsevier, Amsterdam (1986).Google Scholar
  2. 2.
    L. J. Goad, G. G. Holz, Jr., and D. H. Beach, Effect of the allylamine antifungal drug SF 86–327 on the growth and sterol synthesis of Leishmania mexicana mexicana promastigotes, Biochem. Pharmacol. 34:3785 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    J. D. Berman, and J. V. Gallalee, In vitro antileishmanial activity of inhibitors of steroid biosynthesis and combinations of antileishmanial agents, J. Parasitol. 73:671 (1987).PubMedCrossRefGoogle Scholar
  4. 4.
    J. D. Berman, L. J. Goad, D. H. Beach, and G. G. Holz, Jr, Effects of ketoconazole on sterol biosynthesis by Leishmania mexicana mexicana amastigotes in murine macrophage tumor cells, Mol. Biochem. Parasitol. 20:85 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    E. T. Takafuji, L. D. Hendricks, J. L. Daubek, K. M. McNeil, H. M. Scagliola, and C. L. Diggs, Cutaneous leishmaniasis associated with jungle training, Am. J. Trop. Med. 29:516 (1980).Google Scholar
  6. 6.
    L. J. Goad, G. G. Holz, Jr., and D. H. Beach, Sterols of ketoconazole-inhibited Leishmania mexicana mexicana promastigotes, Mol. Biochem. Parasitol. 15:257 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    K. P. Chang, C. A. Nacy, and R. D. Pearson, Intracellular parasitism of macrophages in leishmaniasis: In vitro systems and their applications, Meth. Enzymol. 132:603 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    N. K. Borowy, E. Fink, and H. Hirumi, Trypanosoma brucei: Five commonly used trypanosides assayed in vitro with a mammalian feeder layer system for the the cultivation of bloodstream forms, Exp. Parasitol. 60:323 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    H. Dixon, C. D. Ginger, and J. Williamson, Trypanosome sterols and their metabolic origins, Comp. Biochem. Physiol. 41B:1 (1972).CrossRefGoogle Scholar
  10. 10.
    D. H. Beach, L. J. Goad, and G. G. Holz, Jr., Effects of ketoconazole on sterol biosynthesis of Trypanosoma cruzi epimastigotes, Biochem. Biophys. Res. Commun 136:851 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    K. Iwata, Drug resistance in human pathogenic fungi, inIn vitro and in vivo evaluation of antifungal agents,” K. Iwata and H. Vanden Bossche, eds., Elsevier, Amsterdam (1986).Google Scholar
  12. 12.
    J. F. Ryley, R. G. Wilson, and K. J. Barrett-Bee, Azole resistance in Candida albicans, Sabouraudia 22:53 (1984).PubMedCrossRefGoogle Scholar
  13. 13.
    A. Ebrahimzadeh, and T. C. Jones, A comparative study of different Leishmania tropica isolates from Iran: Correlation between infectivity and cytochemical properties, Am J. Trop. Med. Hyg. 32:694 (1983).PubMedGoogle Scholar
  14. 14.
    J. A. Coderre, S. M. Beverley, R. T. Schimke, and D. V. Santi, Overproduction of a bifunctional thymidylate-synthetase-dihydrofolate reductase and DNA amplification in methotrexate-resistant Leishmania tropica, Proc. Natl. Acad. Sci. USA 80:2132 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    J. K. Lanyi, W. Z. Plachy, and M. Kates, Lipid interactions in membranes of extremely halophilic bacteria. II. Modification of the bilayer structure by squalene, Biochemistry 13:4914 (1974).PubMedCrossRefGoogle Scholar
  16. 16.
    G. Daum, Lipids of mitochondria, Biochim. Biophys. Acta 822:1 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    P. L. Yeagle, Cholesterol and the cell membrane. Biochim. Biophys. Acta 822:267 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    G. G. Holz, Jr., J. A. Erwin, B. Wagner, and N. Rosenbaum, The nutrition of Tetrahymena setifera HZ-1, J. Protozool. 9:359 (1962).CrossRefGoogle Scholar
  19. 19.
    W. J. Pinto, and W. R. Nes, Stereochemical specificity for sterols in Saccaromyces cerevisiae, J. Biol. Chem. 258:4472 (1983).PubMedGoogle Scholar
  20. 20.
    M. Ramgopal, and K. Bloch, Sterol synergism in yeast, J. Biol. Chem. 80:712 (1983).Google Scholar
  21. 21.
    J. S. Dahl, and C. E. Dahl, Coordinate regulation of unsaturated phospholipid, RNA and protein synthesis in Mycoplasma capricolum by cholesterol, Proc. Natl. Acad. Sci. USA 80:692 (1983).PubMedCrossRefGoogle Scholar
  22. 22.
    R. J. Rodriguez, C. Low, C. D. K. Bottema, and L. W. Parks, Multiple functions for sterols in Saccharomyces cerevisiae, Biochim. Biophys. Acta 837:336 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    W. D. Nes, and R. C. Heupel, Physiological requirements for biosynthesis of multiple 24ß -methyl sterols in Gibberella fujikuroi, Arch. Biochem. Biophys. 244:211 (1986).PubMedCrossRefGoogle Scholar
  24. 24.
    C. Dahl, H.-P. Biemann, and J. Dahl, A protein kinase antigenically related to pp60v-src possibly involved in yeast cell cycle control: Positive in vivo regulation by sterol, Proc. Natl. Acad. Sci. USA 84:4012 (1987).PubMedCrossRefGoogle Scholar
  25. 25.
    P. A. Haughan, J. R. Lenton, and L. J. Goad, Paclobutrazol inhibition of sterol biosynthesis in a cell suspension culture and evidence of an essential role for 24-ethylsterol in plant cell division, Biochem. Biophys. Res. Commun. 146:510 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • David H. Beach
    • 1
  • L. John Goad
    • 2
  • Jonathan D. Berman
    • 3
  • Thomas E. Ellenberger
    • 4
  • Steven M. Beverley
    • 4
  • George G. HolzJr.
    • 1
  1. 1.Department of Microbiology and ImmunologyS.U.N.Y. Health Science Center at SyracuseSyracuseUSA
  2. 2.Department of BiochemistryUniversity of LiverpoolLiverpoolUK
  3. 3.Division of Experimental Therapeutics, Walter Reed ArmyInstitute of ResearchUSA
  4. 4.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUSA

Personalised recommendations