Advertisement

Generation and Applications of Human Monoclonal Antibodies to Herpes Viruses

  • P. A. Bradshaw
  • S. Perkins
  • E. T. Lennette
  • J. Rowe
  • S. K. H. Foung

Abstract

Human cytomegalovirus (CMV) and varicella zoster virus (VZV) are two herpes viruses associated with severe infections in immunosuppressed or immunodeficient patients. For example, bone marrow transplant recipients are especially susceptible to CMV infections and juvenile leukemia patients are vulnerable to VZV infections (Gershon, 1980; Meyers et al, 1986). Three approaches are used to control these infections: antiviral drugs, active immunization with attenuated viruses, and passive immunization with hyperimmune immunoglobulin preparations. Two nucleoside analogs, 9-(1,3-dihydroxy-2-propoxymethyl) guanine (DHPG) and acyclovir (ACV), have recently been studied for treatment of CMV infections. Although DHPG (Koretz, et al, 1986) and, in some cases, ACV (Balfour, et al, 1982), have some efficacy in treating CMV-infected patients, their use is limited by toxic effects and neither is effective against CMV pneumonia (Wade, et al, 1982; Myers, 1985). Antiviral drug therapy against severe VZV infections, however, is more promising. Both ACV and vidarabine, for example, are effective in reducing the severity of VZV infections in immunosuppressed patients (Vildé, et al, 1986).

Keywords

Varicella Zoster Virus Herpes Virus Human Monoclonal Antibody Fusion Efficiency Human Lymphoblastoid Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arvin, A. M., and Koropchak, C. M., 1980, Immunoglobulins, M and G to varicella-zoster virus measured by solid-phase radioimmunoassay: Antibody responses to varicella and herpes zoster infections, J.Clin.Microbiol., 12:367.PubMedGoogle Scholar
  2. Balfour, H. H., Bean, B., Mitchell, C. D., Sachs, G. W., Boen, J. R., and Edelman, C. K., 1982, Acyclovir in immunocompromised patients with cytomegalovirus disease: A controlled trial at one institution, Am.J.Med., 73:241.PubMedCrossRefGoogle Scholar
  3. Brodsky, F. M., Parham, P., Barnstable, C. J., Crumpton, M. J., and Bodmer, W. F., 1979, Monoclonal antibodies for analysis of the HLA system, Immunol.Rev., 47:3.PubMedCrossRefGoogle Scholar
  4. Centers for Disease Control, 1984, Varicella-zoster immune globulin for the prevention of chicken pox: Recommendations of the immunization practices advisory committee, Ann.Intern.Med., 100:859.CrossRefGoogle Scholar
  5. Condie, R. M., and O’Reillys R. J., 1984, Prevention of cytomegalovirus infection by prophylaxis with an intravenous, hyperimmune, native, unmodified cytomegalovirus globulin, Am.J.Med., 76:134.PubMedCrossRefGoogle Scholar
  6. Croce, C. M., Linnenbach, A., Hall, W., Steplewski, Z., and Koprowski, H., 1980, Production of human hybridomas secreting antibodies to measles virus, Nature, 288:488.PubMedCrossRefGoogle Scholar
  7. Foung, S. K. H., and Lennette, E. T., 1986, A strategy to produce human monoclonal antibodies to herpes viruses in: “Human Herpes virus Infections: Pathogenesis, Diagnosis, and Treatment,” C. Lopez and B. Roizman, eds, Raven Press, New York.Google Scholar
  8. Foung, S, K. H., Perkins, S., Arvin, A., Lifson, J., Mohagheghpour, N., Fishwild, D., Grumet, F. C, and Engleman, E. G., 1985a, Production of human monoclonal antibodies using a human-mouse fusion partner in: “Human Hybridomas and Monoclonal Antibodies,” E.G. Engleman, S.K. Foung, J.W. Larrick, and A. Raubitschek, eds., Plenum Press, New York.Google Scholar
  9. Foung, S. K. H., Perkins, S., Koropchak, C, Fishwild, D., Wittek, A. E., Engleman, E. G., Grumet, F. C, and Arvin, A. M., 1985b, Human monoclonal antibodies neutralizing varicella-zoster virus, J. Infect.Pis., 152:280.CrossRefGoogle Scholar
  10. Foung, S. K. H., Perkins, S., Raubitschek, A., Larrick, J., Lizak, G., Fishwild, D., Engleman E. G., and Grumet, F. C., 1984, Rescue of human monoclonal antibody production from an EBV-transformed B cell line by fusion to a human-mouse hybridoma, J. Immunol.Meth.,70:83.CrossRefGoogle Scholar
  11. Foung, S. K. H., Sasaki, D., Grumet, F. C, and Engleman, E. G., 1982, Production of functional human T-T hybridomas in selection medium lacking aminopterin and thymidine, Proc. Natl.Acad. Sci., U.S.A., 79:7484.PubMedCrossRefGoogle Scholar
  12. Gershon, A. A., 1985, Live attenuated varicella vaccine in: “The Herpes viruses, vol. 4,” B. Roizman and C. Lopez, eds., Plenum Press, New York.Google Scholar
  13. Gershon, A., 1980, Live attenuated varicella-zoster vaccine, Rev.Infect. Pis., 2:393.CrossRefGoogle Scholar
  14. Grose, C, Edmond, B. J., and Brunell, P. A., 1979, Complement enhanced neutralizing antibody response to varicella-zoster virus, J. Infect.Pis., 139:432.CrossRefGoogle Scholar
  15. Koretz, S. H., and members of the Collaborative PHPG Study Group, 1986, Treatment of serious cytomegalovirus infections with 9-(1,3-dihydroxy-2-propoxymethyl) guanine in patients with AIPS and other immunodeficiencies, N.Engl.J.Med., 314:801.CrossRefGoogle Scholar
  16. Kreis, T. E., and Lodish, H. F., 1986, Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface, Cell, 46:929.PubMedCrossRefGoogle Scholar
  17. Meyers, J. P., 1985, Cytomegalovirus infection after organ allografting: prospects for immunoprophylaxis in: “The Herpes viruses, vol. 4,” B. Roizman and C. Lopez, eds., Plenum Press, New York.Google Scholar
  18. Meyers, J. P., Flournoy, N., and Thomas, E. P., 1986, Risk factors for cytomegalovirus infection after human marrow transplantation, J. Infect.Pis., 153:478.CrossRefGoogle Scholar
  19. Miller, R. A., Oseroff, A. R., Strattle, P. T., and Levy, R., 1983, Monoclonal antibody therapeutic trials in seven patients with T-cell lymphoma, Blood, 62:988.PubMedGoogle Scholar
  20. Mocarski, E. S., Pereira, L., and Michael, N., 1985, Precise localization of genes on large animal virus genomes: Use of Xgtll and monoclonal antibodies to map the gene for a cytomegalovirus protein family, Proc. Natl.Acad. Sci.USA., 82:1266.PubMedCrossRefGoogle Scholar
  21. Nose, M., and Wigzell, H., 1983, Biological significance of carbohydrate chains on monoclonal antibodies, Proc. Natl.Acad. Sci.USA., 80:6632.PubMedCrossRefGoogle Scholar
  22. Nowinski, R., Boglund, C., Lane, J., Lastrum, M., Bernstein, I., Young, W., Hakomori, S., Hall, L., and Cooney, M., 1980, Production of antibody to tetanus toxoid by continuous human lymphoblastoid cell lines, Science, 199:1439.Google Scholar
  23. Olsson, L., and Kaplan, H. S., 1980, Human-human hybrids producing monoclonal antibodies of predefined antigenic specificity, Proc. Natl. Acad. Sci. USA., 77:5429.PubMedCrossRefGoogle Scholar
  24. Pande, H., Baak, S. W., Riggs, A. P., Clark, B. R., Shively, J. E., and Zaia, J. A., 1984, Cloning and physical mapping of a gene fragment coding for a 64-kilodalton major late antigen of human cytomegalovirus, Proc. Natl.Acad. Sci.USA., 81:4965.PubMedCrossRefGoogle Scholar
  25. Paryani, S. G., Arvin, A. M., Koropchak, C. M. Wittek, A. E., Amylon, M. P., Pobkin, M. B., and Budinger, M. P., 1984, Varicella zoster antibody titers after the administration of intravenous immune serum globulin or varicella zoster immune globulin, Am.J.Med., 76:124.PubMedCrossRefGoogle Scholar
  26. Plotkin, S. A., 1985, CMV vaccines in: “The Herpes viruses, vol. 4,” B. Roizman and C. Lopez, eds., Plenum Press, New York.Google Scholar
  27. Scheid, A., and Choppin, P. W., 1977, Two disulfide-linked polypeptide chains constitute the active F protein of paramyxovirus, Virology., 80:54.PubMedCrossRefGoogle Scholar
  28. Sly, W. S., Sekhon, G. S., Kennett, R., Bodmer, W. F., and Bodmer, J., 1976, Permanent lymphoid lines from genetically marked lymphocytes: Success with lymphocytes recovered from frozen storage, Tiss. Antigens., 7:165.CrossRefGoogle Scholar
  29. Steinitz, M., Klein, G., Koskimies, S., and Makela, O., 1977, EB virusinduced B lymphocyte cell lines producing specific antibodies, Nature, 269:420.PubMedCrossRefGoogle Scholar
  30. Takahashi, M., Asano, Y., Kamiya, H., and Baba, K., 1986, Experience with a live varicella vaccine In: “Human Herpes virus Infections: Pathogenesis, Piagnosis, and Treatment, C. Lopez and B. Roizman, eds., Raven Press, New York.Google Scholar
  31. Tamura, G. S., Pailey, M. O., Gallatin, W. M., McGrath, M. S., Weissman, I. L., and Pillemer, E. A., 1984, Isolation of molecules recognized by monoclonal antibodies and antisera: The solid phase immunoisolation technique, Anal.Biochem., 136:458.PubMedCrossRefGoogle Scholar
  32. Vilde, J. L., Bricaire, E., Leport, C, Renaudie, M., and Brun-Vezinet, F., 1986, comparative trial of acyclovir and vidarabine in disseminated varicella-zoster virus infections in immunocompromised patients, J.Med.Virol., 20:127.PubMedCrossRefGoogle Scholar
  33. Wade, J. C, Hintz, M., McGuffin, R. W. Springmeyer, S. C, Connor, J. D., and Meyers, J. D., 1982, Treatment of cytomegalovirus pneumonia with high-dose acyclovir, Am.J.Med., 73:249.PubMedCrossRefGoogle Scholar
  34. Zimmermann, U., 1986, Electrical breakdown, electropermeabilization and electrofusion, Rev.Physiol.Biochem.Pharmacol., 105:175.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • P. A. Bradshaw
    • 2
  • S. Perkins
    • 1
  • E. T. Lennette
    • 3
  • J. Rowe
    • 1
  • S. K. H. Foung
    • 1
  1. 1.Department of PathologyStanford University Medical CenterStanfordUSA
  2. 2.Stanford Medical School Blood CenterStanford University, Blood BankPalo AltoUSA
  3. 3.Virolab, IncorporatedBerkeleyUSA

Personalised recommendations