Skip to main content

Abstract

The structure of a protein may be considered as a scaffolding that brings into the correct spatial arrangement a constellation of amino acid side chains to perform a given function. If the structure is disrupted, the function is impaired. The spectrum of functions performed by proteins in living systems makes an understanding of the factors that determine their structures highly desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, M., and Becker, R., 1950, The Classical Theory of Electricity and Magnetism, 2nd ed., Blackie and Son, London.

    Google Scholar 

  • Anfinsen, C. B., 1973, Principles that govern the folding of protein chains, Science 181:223–230.

    Article  PubMed  CAS  Google Scholar 

  • Arakawa, T., and Timasheff, S. N., 1985, Theory of protein solubility, Methods Enzymol. 114:49–77.

    Article  PubMed  CAS  Google Scholar 

  • Arridge, R. G. C., 1965, Calculation of the total dipole moment of a polarizable dipole in a lattice of similar dipoles, Proc. Phys. Soc. 85:1157–1161.

    Article  Google Scholar 

  • Arridge, R. G. C., and Cannon, C. G., 1964, Calculation of the CONH dipole contribution to lattice energies of amides, polyamides and polypeptides, Proc. R. Soc. Lond. A278:91–109.

    Google Scholar 

  • Astbury, W. T., and Woods, H. J., 1933, X-ray studies of the structure of hair, wool and related fibres. II. The molecular structure and elastic properties of hair keratin, Phil. Trans. R. Soc. Lond. 232A:33–394.

    Google Scholar 

  • Aviram, I., Myer, Y. P., and Schejter, A., 1981, Stepwise modification of the electrostatic charge of cytochrome c, J. Biol. Chem. 256:5540–5544.

    PubMed  CAS  Google Scholar 

  • Baker, E. N., and Hubbard, R. E., 1984, Hydrogen bonding in globular proteins, Prog. Biophys. Mol. Biol. 44: 97–179.

    Article  PubMed  CAS  Google Scholar 

  • Baker, W. O., and Yager, W. A., 1942, The relation of dielectric properties to structure of crystalline polymers. II. Linear polyamides, J. Am. Chem. Soc. 64:2171–2177.

    Article  CAS  Google Scholar 

  • Barlow, D. J., and Thornton, J. M., 1983, Ion pairs in proteins, J. Mol. Biol. 168:867–885.

    Article  PubMed  CAS  Google Scholar 

  • Bierzynski, A., Kim, P. S., and Baldwin, R. L., 1982, A salt bridge stabilizes the helix formed by isolated C-peptide of RNAse A, Proc. Natl. Acad. Sci. U.S.A. 79:2470–2474.

    Article  PubMed  CAS  Google Scholar 

  • Bjerrum, N., 1926, Ionic association. I. Influence of ionic association on the activity of ions at moderate degrees of association, Kgl. Danske. Videnskab. Selskab. Math-Fys. Medd. 7:1–48.

    CAS  Google Scholar 

  • Blagdon, D. E., and Goodman, M., 1975, Mechanisms of protein and polypeptide helix initiation, Biopolymers 14:241–245.

    Article  PubMed  CAS  Google Scholar 

  • Blundell, T. L., Barlow, D. J., Borkakoti, N., and Thornton, J. M., 1983, Solvent induced distortions and the curvature of alpha-helices, Nature 306:281–283.

    Article  PubMed  CAS  Google Scholar 

  • Bockris, J. O’M., and Reddy, A. K. N., 1970, Modern Electrochemistry, McDonald, London.

    Google Scholar 

  • Born, M., 1920, Volumen und Hydratationswarme der Ionen, Z. Phys. 1:45–48.

    Article  CAS  Google Scholar 

  • Brant, D. A., and Flory, P. J., 1965a, The role of dipole interactions in determining polypeptide configurations, J. Am. Chem. Soc. 87:663–664.

    Article  CAS  Google Scholar 

  • Brant, D. A., and Flory, P. J., 1965b, The configuration of random polypeptide chains. II. Theory, J. Am. Chem. Soc. 87:2791–2800.

    Article  CAS  Google Scholar 

  • Brant, D. A., Miller, W. G., and Florey, P. J., 1967, Conformational energy estimates for statistically coiling polypeptide chains, J. Mol. Biol. 23:47–65.

    Article  CAS  Google Scholar 

  • Chibnall, A. C., 1967, The Armstrongs and the polypeptide chain in 1909, Chem. Ind. 1967:1289–1290.

    Google Scholar 

  • Chothia, C., Levitt, M., and Richardson, D., 1977, Structure of proteins: Packing of alpha-helices and pleated sheets, Proc. Natl. Acad. Sci. U.S.A. 74:4130–4134.

    Article  PubMed  CAS  Google Scholar 

  • Chou, K. C., Nemethy, G., and Scheraga, H. A., 1983, Energetic approach to the packing of alpha-helices. I. Equivalent helices, J. Phys. Chem. 87:2869–2881.

    Article  CAS  Google Scholar 

  • Chou, K. C., Nemethy, G., and Scheraga, H. A., 1984, Energetic approach to the packing of alpha-helices. 2. General treatment of nonequivalent and nonregular helices, J. Am. Chem. Soc. 106:3161–3170.

    Article  CAS  Google Scholar 

  • Chou, K. C., Nemethy, G., Rumsey, S., Tuttle, R. W., and Scheraga, H. A., 1985, Interactions between an alpha-helix and a beta-sheet. Energetics of alpha/beta packing in proteins, J. Mol. Biol. 186:591–609.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, F. E., and Sternberg, M. J. E., 1980, On the prediction of protein structure: The significance of the root mean square deviation, J. Mol. Biol. 138:321–333.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, F. E., Sternberg, M. J. E., and Taylor, W. R., 1980, Analysis and prediction of protein beta-sheet structures by a combinatorial approach, Nature 285:378–382.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, F. E., Sternberg, M. J. E., and Taylor, W. R., 1982, Analysis and prediction of the packing of alpha-helices against a beta-sheet in the tertiary structure of globular proteins, J. Mol. Biol. 156:821–862.

    Article  PubMed  CAS  Google Scholar 

  • Cohn, E. J., and Ferry, J. D., 1943, The interactions of proteins with ions and dipolar ions, in: Proteins, Amino-acids and Peptides (E. J. Cohn and J. T. Edsall, eds.), Reinhold, New York, pp. 586–622.

    Google Scholar 

  • Cohn, E. J., McMeekin, T. L., Edsall, J. T., and Blanchard, M. H., 1933, The electrical forces in systems containing biological components. II. Molal volumes of amino-acids, proteins and certain related substances, J. Biol. Chem. 100:xxvii.

    Google Scholar 

  • Cook, D. A., 1967, The relation between amino acid sequence and protein conformation, J. Mol. Biol. 29: 167–171.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, A., 1984, Protein fluctuations and the thermodynamic uncertainty principle, Prog. Biophys. Mol. Biol. 44:181–214.

    Article  PubMed  CAS  Google Scholar 

  • Creighton, T. E., 1985, The problem of how and why proteins adopt folded conformations, J. Phys. Chem. 89: 2452–2459.

    Article  CAS  Google Scholar 

  • Debye, V. P., and Huckel, E., 1923, Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen, Z. Phys. 24:185–206.

    CAS  Google Scholar 

  • Dickerson, R. E., and Geiss, I., 1969, The Structure and Action of Proteins, Harper and Row, New York.

    Google Scholar 

  • Driessen, H. P. C., de Jong, W. W., Tesser, G. I., and Bloemendal, H., 1985, The mechanism of N-terminal acetylation of proteins, Crit. Rev. Biochem. 18:281–325.

    Article  CAS  Google Scholar 

  • Edsall, J. T., and McKenzie, H. A., 1983, Water and proteins. II. The location and dynamics of water in protein systems and its relation to their stability and properties, Adv. Biophys. 16:53–183.

    Article  PubMed  CAS  Google Scholar 

  • Edsall, J. T., Flory, P. J., Kendrew, J. C., Liquori, A. M., Nemethy, G., Ramachandran, G. N., and Scheraga, H. A., 1966, A proposal of standard conventions and nomenclature for the description of polypeptide conformations, J. Mol. Biol. 15:399–407; J. Biol. Chem. 241:1004-1012; Biopolymers 4:121-129.

    Article  PubMed  CAS  Google Scholar 

  • Ehrenson, S., 1984, Solvent dielectric attenuation of substituent effects. Dependence on boundary representation in prolate spheroidal cavity models, J. Comp. Chem. 5:56–63.

    Article  CAS  Google Scholar 

  • Eisenberg, D., Weiss, R. M., and Terwilliger, T. C., 1982, The helical hydrophobic moment: A measure of the amphiphilicity of a helix, Nature 299:371–374.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, D., Schwarz, E., Komaromy, M., and Wall, R., 1984, Analysis of membrane and surface protein sequences with the hydrophobic moment plot, J. Mol. Biol. 179:125–142.

    Article  PubMed  CAS  Google Scholar 

  • Engelman, D. M., 1982, An implication of the structure of bacteriorhodopsin. Globular membrane proteins are stabilized by polar interactions, Biophys. J. 37:187–188.

    Article  PubMed  CAS  Google Scholar 

  • Engelman, D. M., and Zaccai, G., 1980, Bacteriorhodopsin is an inside-out protein, Proc. Natl. Acad. Sci. U.S.A. 77:5894–5898.

    Article  PubMed  CAS  Google Scholar 

  • Finney, J., 1979, The organisation and function of water in protein crystals, in: Water—A Complete Treatise, Volume 6 (F. Franks, ed.), Plenum Press, New York, pp. 47–122.

    Google Scholar 

  • Florey, P. J., 1969, Statistical Mechanics of Chain Molecules, Wiley, New York.

    Google Scholar 

  • Franks, F. (ed.), 1972-1982, Water—A Complete Treatise, Plenum Press, New York.

    Google Scholar 

  • Frieden, C., Wolfe, R. G., and Alberty, R. A., 1957, Studies of the enzyme fumarase. IV. The dependence of the kinetic constants at 25C on buffer concentration, composition and pH, J. Am. Chem. Soc. 79:1523–1525.

    Article  CAS  Google Scholar 

  • Friedman, H. L., 1975, Image approximation to the reaction field, Mol. Physiol. 29:1533–1543.

    Article  CAS  Google Scholar 

  • Gabler, R., 1978, Electrical Interactions in Molecular Biophysics—An Introduction, Academic Press, New York.

    Google Scholar 

  • George, P., Hanania, G. I. H., and Eaton, W. A., 1966, Effect of electrostatic environment of redox potentials, in: Hemes and Hemoproteins (B. Chance, R. W. Estabrook, and T. Yonetani, eds.), Academic Press, New York, pp. 267–271.

    Google Scholar 

  • Gibson, K. D., and Scheraga, H. A., 1966, Influence of flexibility on the energy contours of dipole maps, Biopolymers 4:709–712.

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow, J. M., Finney, J. L., and Barnes, P., 1982, Monte-Carlo computer simulation of water-amino acid interactions, Proc. R. Soc. Lond. [Bioi.] 214:213–228.

    Article  CAS  Google Scholar 

  • Gray, T. M., and Matthews, B. W., 1984, Intrahelical hydrogen bonding of serine, threonine and cysteine residues within alpha-helices and its relevance to membrane-bound proteins, J. Mol. Biol. 175:75–81.

    Article  PubMed  CAS  Google Scholar 

  • Hagler, A. T., Stern, P. S., Sharon, R., Becker, J. M., and Naider, F., 1979, Computer simulation of the conformational properties of oligopeptides. Comparison of theoretical methods and analysis of experimental results, J. Am. Chem. Soc. 101:6842–6852.

    Article  CAS  Google Scholar 

  • Hammond, P., 1960, Electric and magnetic images, Proc. IEEE 107C:306–313.

    Google Scholar 

  • Hase, T., Matsubara, H., Koike, H., and Katoh, S., 1983, Amino acid sequence of ferredoxin from a thermophilic blue-green alga, Synechococcus sp. Salt bridges responsible for thermostability, Biochim. Biophys. Acta 744:46–52.

    Article  CAS  Google Scholar 

  • Henderson, R., 1979, The structure of bacteriorhodopsin and its relevance to other membrane proteins, Soc. Gen. Physiol. 33:3–15.

    CAS  Google Scholar 

  • Henry, E. R., Levitt, M., and Eaton, W. A., 1985, Molecular dynamics simulation of photodissociation of carbon monoxide from hemoglobin, Proc. Natl. Acad. Sci. U.S.A. 82:2034–2038.

    Article  PubMed  CAS  Google Scholar 

  • Hill, T. L., 1956, Influence of electrolyte on effective dielectric constants in enzymes, proteins and other molecules, J. Phys. Chem. 60:253–255.

    Article  CAS  Google Scholar 

  • Hingerty, B. E., Ritchie, R. H., Ferrell, T. L., and Turner, J. E., 1985, Dielectric effects in biopolymers: The theory of ionic saturation revisited, Biopolymers 24:427–439.

    Article  CAS  Google Scholar 

  • Hol, W. G. J., 1985a, The role of the alpha-helix dipole in protein function and structure, Prog. Biophys. Mol. Biol. 45:149–195.

    Article  PubMed  CAS  Google Scholar 

  • Hol, W. G. J., 1985b, Effects of the alpha-helix dipole upon the functioning and structure of proteins and peptides, Adv. Biophys. 19:133–165.

    Article  PubMed  CAS  Google Scholar 

  • Hol, W. G. J., van Duijnen, P. T., and Berendsen, H. J. C., 1978, The alpha-helix dipole and the properties of proteins, Nature 273:443–446.

    Article  PubMed  CAS  Google Scholar 

  • Hol, W. G. J., Halie, L. M., and Sander, C., 1981, Dipoles of the alpha-helix and beta-sheet: Their role in protein folding, Nature 294:532–536.

    Article  PubMed  CAS  Google Scholar 

  • Hollecker, M., and Creighton, T. E., 1982, Effect on protein stability of reversing the charge of amino groups, Biochim. Biophys. Acta 701:395–404.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, M. A., and Matthews, B. W., 1982, Structure of thermo lysin refined at 1.6A resolution, J. Mol. Biol. 160:623–639.

    Article  PubMed  CAS  Google Scholar 

  • Honig, B. H., and Hubbell, W. L., 1984, Stability of salt-bridges in membrane proteins, Proc. Natl. Acad. Sci. U.S.A. 81:5412–5416.

    Article  PubMed  CAS  Google Scholar 

  • Honig, B. H., Hubbell, W. L., and Flewelling, R. F., 1986, Electrostatic interactions in membranes and proteins, Annu. Rev. Biophys. Biophys. Chem. 15:163–193.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen, C. F., and Linderstrom-Lang, K., 1949, Salt-linkages in proteins, Nature 164:411–412.

    Article  PubMed  CAS  Google Scholar 

  • Karplus, M., and Kushick, J. N., 1981, Method for estimating the configurational entropy of macromolecules, Macromolecules 14:325–332.

    Article  CAS  Google Scholar 

  • Kauzmann, W., 1959, Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14:1–63.

    Article  PubMed  CAS  Google Scholar 

  • Klapper, I., Hagstrom, R., Fine, R., Sharp, K., and Honig, B., 1986, Focussing of electric fields in the active site of Cu-Zn superoxide dismutase: Effects of ionic strength and amino-acid modification, Proteins 1:47–59.

    Article  PubMed  CAS  Google Scholar 

  • Kyte, J., and Doolittle, R. F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157:105–132.

    Article  PubMed  CAS  Google Scholar 

  • Linderstrom-Lang, K. U., and Schellman, J. A., 1959, Protein structure and enzyme activity, in: The Enzymes, 2nd ed. (P. D. Boyer, H. Hardy, and K. Myrbäck, eds.), pp. 443–510, Academic Press, New York.

    Google Scholar 

  • Malmberg, C. G., and Maryott, A. A., 1956, Dielectric constant of water from 0 to 100 degrees C, J. Res. Natl. Bur. Stand. 56:1–8.

    CAS  Google Scholar 

  • Matthew, J. B., and Richards, F. M., 1982, Anion binding and pH dependent electrostatic effects in ribonuclease, Biochemistry 21:4989–4999.

    Article  PubMed  CAS  Google Scholar 

  • Matthew, J. B., Gurd, F. R. N., Garcia-Moreno, B. E., Flanagan, M. A., March, K. L., and Shire, S. J.,1985, pH dependent processes in proteins, Crit. Rev. Biochem. 18:90–197.

    Article  Google Scholar 

  • McCammon, J. A., 1984, Protein dynamics, Rep. Prog. Phys. 47:1–41.

    Article  Google Scholar 

  • Mirsky, A. E., and Pauling, L., 1936, On the structure of native, denatured and coagulated proteins, Proc. Natl. Acad. Sci. U.S.A. 22:439–447.

    Article  PubMed  CAS  Google Scholar 

  • Momany, F. A., McGuire, R. F., Burgess, A. W., and Scheraga, H. A., 1975, Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, non-bonded interactions, hydrogen bond interactions and intrinsic torsional potentials for the naturally occurring amino acids, J. Phys. Chem. 79:2361–2381.

    Article  CAS  Google Scholar 

  • Moore, G. R., and Rogers, N. K., 1985a, The influence of electrostatic interactions between buried charges on the properties of membrane proteins, J. Inorg. Biochem. 23:219–226.

    Article  PubMed  CAS  Google Scholar 

  • Moore, G. R., and Rogers, N. K., 1985b, Erratum to “The influence of electrostatic interactions between buried charges on the properties of membrane proteins,” J. Inorg. Biochem. 25:295.

    Article  Google Scholar 

  • Nakamura, H., and Wada, A., 1985, Nature of the charge distribution in proteins. III. Electric multipole structures, J. Phys. Soc. (Jpn.) 54:4047–4052.

    Article  CAS  Google Scholar 

  • Nishikawa, K., 1983, Assessment of secondary structure prediction of proteins. Comparison of computerised Chou-Fasman method with others, Biochim. Biophys. Acta 748:285–299.

    Article  PubMed  CAS  Google Scholar 

  • Onsager, L., 1936, Electric moments of molecules in liquids, J. Am. Chem. Soc. 58:1486–1493.

    Article  CAS  Google Scholar 

  • Paul, C. H., 1982, Building models of globular protein molecules from their amino acid sequences. I. Theory, J. Mol. Biol. 155:53–62.

    Article  PubMed  CAS  Google Scholar 

  • Paul, C. H., and Rosenbusch, J. P., 1985, Folding patterns of porin and bacteriorhodopsin, EMBO J. 4:1593–1597.

    PubMed  CAS  Google Scholar 

  • Pauling, L., and Corey, R. B., 1951, Atomic coordinates and structure factors for two helical configurations of polypeptide chains, Proc. Natl. Acad. Sci. U.S.A. 37:235–240.

    Article  PubMed  CAS  Google Scholar 

  • Perutz, M. F., 1974, Mechanism of denaturation of haemoglobin by alkali, Nature 247:341–344.

    Article  PubMed  CAS  Google Scholar 

  • Perutz, M. F., 1978, Electrostatic effects in proteins, Science 201:1187–1191.

    Article  PubMed  CAS  Google Scholar 

  • Perutz, M. F., and Raidt, H., 1975, Stereochemical bases of heat stability in bacterial ferredoxins and in haemoglobin A2, Nature 255:256–259.

    Article  PubMed  CAS  Google Scholar 

  • Perutz, M. F., Kendrew, J. C., and Watson, H. C., 1965, Structure and function of haemoglobin II. Some relations between polypeptide chain configuration and amino-acid sequence, J. Mol. Biol. 13:669–678.

    Article  CAS  Google Scholar 

  • Pethig, R., 1979, Dielectric and Electronic Properties of Biological Materials, John Wiley & Sons, New York.

    Google Scholar 

  • Ptitsyn, O. B., 1969, Statistical analysis of the distribution of amino acid residues among helical and non-helical regions in globular proteins, J. Mol. Biol. 42:501–510.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran, G. N., 1967, Conformation of Biopolymers: Proceedings of the 1967 Conference in Madras, Academic Press, New York.

    Google Scholar 

  • Ramachandran, G. N., and Sasisekharan, V., 1968, Conformation of polypeptides and proteins, Adv. Protein Chem. 23:283–437.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran, G. N., and Srinivasan, R., 1970, Effective dielectric constant values to be used in biopolymer energy calculations, Ind. J. Biochem. 7:95–97.

    CAS  Google Scholar 

  • Ramachandran, G. N., Ramakrishnan, C., and Sasisekharan, V., 1963, Stereochemistry of polypeptide chain configurations, J. Mol. Biol. 7:95–99.

    Article  PubMed  CAS  Google Scholar 

  • Rashin, A. A., and Honig, B., 1984, On the environment of ionizable groups in globular proteins, J. Mol. Biol. 173:515–521.

    Article  PubMed  CAS  Google Scholar 

  • Rees, D. C., 1980, Experimental evaluation of the effective dielectric constant of proteins, J. Mol. Biol. 141: 323–326.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, D., 1961, ZEBRA and the crystallographer, in: Computing Method and the Phase Problem in X-Ray Crystal Analysis (R. Pepinsky, J. M. Robertson, and J. C. Speakman, eds.), Pergamon Press, Oxford, pp. 1–8.

    Google Scholar 

  • Rogers, N. K., 1986, The modelling of electrostatic interactions in the function of globular proteins, Prog. Biophys. Mol. Biol. 48:37–66.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, N. K., and Sternberg, M. J. E., 1984, Electrostatic interactions in globular proteins: Different dielectric models applied to the packing of alpha-helices, J. Mol. Biol. 174:527–542.

    Article  PubMed  CAS  Google Scholar 

  • Schellman, J. A., 1953, The application of the Bjerrum ion association theory to the binding of anions by proteins, J. Phys. Chem. 57:472–475.

    Article  CAS  Google Scholar 

  • Scheraga, H. A., 1985, Effect of side chain-backbone electrostatic interactions on the stability of alpha-helices, Proc. Natl. Acad. Sci. U.S.A. 82:5585–5587.

    Article  PubMed  CAS  Google Scholar 

  • Sheridan, R. P., and Allen, L. C., 1980, The electrostatic potential of the alpha-helix, Biophys. Chem. 11:133–136.

    Article  PubMed  CAS  Google Scholar 

  • Sheridan, R. P., and Allen, L. C., 1981, The active site potential of human carbonic anhydrase, J. Am. Chem. Soc. 103:1544–1550.

    Article  CAS  Google Scholar 

  • Sheridan, R. P., Levy, R. M., and Salemme, F. R., 1982, Alpha-helix dipole moment and electrostatic stabilization of 4-alpha-helical proteins, Proc. Natl. Acad. Sci. U.S.A. 79:4545–4549.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, D. N., and Scheraga, H. A., 1972, Hairpin bend and interhelical interactions in alpha-helical poly(L-alanine) in water, Arch. Biochem. Biophys. 153:449–456.

    Article  PubMed  CAS  Google Scholar 

  • Speakman, J. B., and Hirst, M. C., 1931, Constitution of the keratin molecule: Interchain salt linkages in wool, Nature 128: 1073–1074.

    Article  Google Scholar 

  • Stankovich, M. T., Schopfer, L. M., and Massey, V., 1978, Determination of glucose oxidase oxidation-reduction potentials and the oxygen reactivity of fully reduced and semi-quinoid forms, J. Biol. Chem. 253: 4971–4979.

    PubMed  CAS  Google Scholar 

  • Sternberg, M. J. E., and Thornton, J. M., 1978, Prediction of protein structure from amino acid sequence, Nature 271:15–20.

    Article  PubMed  CAS  Google Scholar 

  • Sundaralingam, M., Drendel, W., and Greaser, M., 1985, Stabilization of the long central helix of troponin C by intrahelical salt bridges between charged amino acid side chains, Proc. Natl. Acad. Sci. U.S.A. 82: 7944–7947.

    Article  PubMed  CAS  Google Scholar 

  • Tam, S. C., and Williams, R. J. P., 1985, Electrostatic and biological systems, Struct. Bonding 63:103–151.

    Article  CAS  Google Scholar 

  • Tanford, C., 1957, Theory of protein titration curves. II. Calculations for simple models at low ionic strength, J. Am. Chem. Soc. 79:5340–5347.

    Article  CAS  Google Scholar 

  • Tanford, C., 1961, Physical Chemistry of Macromolecules, Wiley, New York.

    Google Scholar 

  • Tanford, C., 1962, Contribution of hydrophobic interactions to the stability of the globular conformation of proteins, J. Am. Chem. Soc. 84:4240–4247.

    Article  CAS  Google Scholar 

  • Tanford, C., and Kirkwood, J. G., 1957, Theory of protein titration curves. I. General equations for impenetrable spheres, J. Am. Chem. Soc. 79:5333–5339.

    Article  CAS  Google Scholar 

  • Tanford, C., and Roxby, R., 1972, Interpretation of protein titration curves. Application to lysozyme, Biochemistry 11:2192–2198.

    Article  PubMed  CAS  Google Scholar 

  • Thornton, J. M., and Sibanda, B. L., 1983, Amino and carboxy-tenninal regions in globular proteins, J. Mol. Biol. 167:443–460.

    Article  PubMed  CAS  Google Scholar 

  • Timasheff, S. N., 1970, Polyelectrolyte properties of globular proteins, Biol. Macromol. Ser. 3:1–64.

    Google Scholar 

  • Voet, J. G., Coe, J., Epstein, J., Matossian, V., and Shipley, T., 1981, Electrostatic control of enzyme reactions: Effects of ionic strength on the pKa of an essential acidic group on glucose oxidase, Biochemistry 20:7182–7185.

    Article  PubMed  CAS  Google Scholar 

  • Von Hippel, P. H., and Schleich, T., 1969, The effects of neutral salts on the structure and conformational stability of macromolecules in solution, Biol. Macromol. Ser. 2:417–574.

    Google Scholar 

  • Wada, A., 1976, The alpha-helix as an electric macro-dipole, Adv. Biophys. 9:1–63.

    CAS  Google Scholar 

  • Wada, A., and Nakamura, H., 1981, Nature of the charge distribution in proteins, Nature 293:757–758.

    Article  PubMed  CAS  Google Scholar 

  • Wada, A., Nakamura, H., and Sakamoto, T., 1985, Nature of the charge distribution in proteins. II. Effect of atomic partial charges on ionic charges, J. Phys. Soc. (Jpn.) 54:4042–4046.

    Article  CAS  Google Scholar 

  • Wakana, H., Wako, H., and Saito, N., 1984, Monte-Carlo study on local and small amplitude conformational fluctuation in hen egg white lysozyme, Int. J. Peptide Protein Res. 23:315–323.

    Article  CAS  Google Scholar 

  • Walker, J. E., Wonacott, A. J., and Harris, J. I., 1980, Heat stability of a tetrameric enzyme, D-glyceraldehyde-3-phosphate dehydrogenase, Eur. J. Biochem. 108:581–586.

    Article  PubMed  CAS  Google Scholar 

  • Warme, P. K., and Morgan, R. S., 1978, A survey of amino-acid side chain interactions in 21 proteins, J. Mol. Biol. 118:289–304.

    Article  PubMed  CAS  Google Scholar 

  • Warshel, A., 1978a, A microscopic model for calculations of chemical processes in aqueous solutions, Chem. Phys. Lett. 55:454–458.

    Article  CAS  Google Scholar 

  • Warshel, A., 1978b, Energetics of enzyme catalysis, Proc. Natl. Acad. Sci. U.S.A. 75:5250–5254.

    Article  PubMed  CAS  Google Scholar 

  • Warshel, A., 1979, Calculations of chemical processes in solutions, J. Phys. Chem. 83:1640–1652.

    Article  CAS  Google Scholar 

  • Warshel, A., and Russell, S. T., 1984, Calculations of electrostatic interactions in biological systems and in solutions, Q. Rev. Biophys. 17:283–422.

    Article  PubMed  CAS  Google Scholar 

  • Warshel, A., Russell, S. T., and Churg, A. K., 1984, Macroscopic models for studies of electrostatic interactions in proteins: Limitations and applicability, Proc. Natl. Acad. Sci. U.S.A. 81:4785–4789.

    Article  PubMed  CAS  Google Scholar 

  • Warwicker, J., and Watson, H. C., 1982, Calculation of the electric potential in the active site cleft due to alphahelix dipoles, J. Mol. Biol. 157:671–679.

    Article  PubMed  CAS  Google Scholar 

  • Warwicker, J., Ollis, D., Richards, F. M., and Steitz, T. A., 1985, Electrostatic field of the large fragment of Escherichia coli DNA polymerase I, J. Mol. Biol. 186:645–649.

    Article  PubMed  CAS  Google Scholar 

  • Weill, G., and Andre, J. J., 1978, Dipole-dipole interactions and the relative stability of different types of aggregates of helical polypeptides, Biopolymers 17:811–814.

    Article  CAS  Google Scholar 

  • Zauhar, R. J., and Morgan, R. S., 1985, A new method for computing the macromolecular electric potential, J. Mol. Biol. 186:815–820.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Rogers, N.K. (1989). The Role of Electrostatic Interactions in the Structure of Globular Proteins. In: Fasman, G.D. (eds) Prediction of Protein Structure and the Principles of Protein Conformation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1571-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1571-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8860-2

  • Online ISBN: 978-1-4613-1571-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics