Post-Irradiation Alterations In Cerebral Blood Flow

  • Lorris G. Cockerham
  • C. Douglas Forcino
Part of the Nato ASI Series book series (NSSA, volume 154)


With sufficient dose and qualities of radiation, cell injury causes release of important circulating mediators, cell death and, in those cells which do survive, delayed effects or subtle changes in cell physiology which can sensitize them to other insults. Gastrointestinal damage occurs at the upper end of the intermediate dose range, but hematopoietic damage occurs at the lower end (i.e. 150–200 cGy). However, subtle metabolic and physiologic deficiencies may occur in other organ systems. For example, at intermediate doses of radiation, cardiovascular changes may not be apparent, but these doses may sensitize the individual to sepsis or certain therapeutic drugs which also alter cardiovascular physiology.


Cerebral Blood Flow Regional Cerebral Blood Flow Performance Decrement Disodium Cromoglycate Mast Cell Stabilizer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alter, W.A., III, Hawkins, R.N., Catravas, G.N., Doyle, T.F., and Takenaga, J.K., 1983, Possible role of histamine in radiation induced hypotension in the rhesus monkey, Radiat. Res., 94:654.Google Scholar
  2. Brodal, A., 1969, The reticular formation, in “Neurological Anatomy,” Oxford University Press, New York.Google Scholar
  3. Bruner, A., Bogo, V., and Henderson, E.A., 1975, Dose-rate effects of 60Co irradiation on performance and physiology in monkeys, in Topical Report DNA 3660T, Lovelace Foundation for Medical Education-and Research, Albuquerque, New Mexico.Google Scholar
  4. Carmichael, A.J., Arroyo, C.M., and Cockerham, L.G., Reaction of disodium cromoglycate (DSCG) with hydrated electrons, J. free Rad. Biol. Med. (In Press)Google Scholar
  5. Carraway, R.E., Cochrane, D.E., Lansman, J.B., Leeman, S.E. Paterson, B.M., and Welch, H.J., 1982, Neurotensin stimulates exocytotic histamine secretion from rat mast cells and elevates plasma histamine levels, J. Physiol., 323:403.PubMedGoogle Scholar
  6. Cerveny, T.J., Forcino, C.D., Smart, S.W., and Cockerham, L.G., 1987, Postradiation cerebral edema and blood-brain barrier disruption in the primate, Fed. Proc., 46:354.Google Scholar
  7. Chapman, P.H., and Young, R.J., 1968, Effect of cobalt-60 gamma irradiation on blood pressure and cerebral blood flow in the Macaca mulatta, Radiat. Res., 35:78.PubMedCrossRefGoogle Scholar
  8. Cochrane, D.E., Emigh, C., Levine, G., Carraway, R.E., and Leeman, S.E., 1982, Neurotensin alters cutaneous vascular permeability and stimulates histamine release from isolated skin, Ann. N. Y. Acad. Sci., 400:396.CrossRefGoogle Scholar
  9. Cockerham, L.G., Bogo, V., and Gossett-Hagerman, C.J., 1984a, Gamma radiation produced performance decrement in rat assessed with the accelerod, Neurosci. Letters, 49:297.CrossRefGoogle Scholar
  10. Cockerham, L.G., Doyle, T.F., Donlon, M.A., and Helgeson, E.A., 1984b, Canine postradiation histamine levels and subsequent response to Compound 48/80, Aviat. Space Environ. Med., 55:1041.PubMedGoogle Scholar
  11. Cockerham, L.G., Doyle, T.F., Donlon, M.A., and Gossett-Hagerman, C.J., 1985, Antihistamines block radiation-induced increased intestinal blood flow in canines, Fundam. Appl. Toxicol., 5:597.PubMedCrossRefGoogle Scholar
  12. Cockerham, L.G., Cerveny, T.J., and Hampton, J.D., 1986a, Postradiation regional cerebral blood flow in primates, Aviat. Space Environ. Med., 57:578.PubMedGoogle Scholar
  13. Cockerham, L.G., Doyle, T.F., Pautler, E.L., and Hampton, J.D., 1986b, Disodium cromoglycate, a mast cell stabilizer, alters postradiation regional cerebral blood flow in primates, J. Toxicol. Environ. Health, 18:91.PubMedCrossRefGoogle Scholar
  14. Cockerham, L.G., Pautler, E.L., Carraway, R.E., Cochrane, D.E., and Hampton, J.D., 1988a, Effect of disodium cromoglycate (DSCG) and antihistamines on postirradiation cerebral blood flow and plasma levels of histamine and neurotensin, Fundam. Appl. Toxicol. (In Press)Google Scholar
  15. Cockerham, L.G., Arroyo, C.M., and Hampton, J.D., 1988b, Effects of 4-hydroxypyrazoio (3,4-d) pryimidine (Allopurinol) on postirradiation cerebral blood flow: Implications of free radical involvement, J. Free Rad. Biol. Med. (In Press)Google Scholar
  16. Curran, C.R., Young, R.W., and Davis, W.F., 1973, The performance of primates following exposure to pulsed whole-body gamma-neutron radiation, in AFRRI SR73-1, Armed Forces Radiobiology Research Institute, Bethesda, MD.Google Scholar
  17. de Haan, H.J., Kaplan, S.J., and Germas, J.E., 1969, Visual discrimination performance in the monkey following a 5,000-rad pulse of mixed gamma-neutron radiation, in AFRRI SR69-1, Armed Forces Radiobiology Research Institute, Bethesda, MD.Google Scholar
  18. Doyle, T.F., Curran, C.R., and Turns, J.E., 1974, The prevention of radiation-induced, early transient incapacitation of monkeys by an antihistamine, Proc. Soc. Exper. Biol. Med., 145:1018.Google Scholar
  19. Doyle, T.F., and Strike, T.A., 1977, Radiation-released histamine in the rhesus monkey as modified by mast-cell depletion and antihistamine, Experientia, 33:1047.PubMedCrossRefGoogle Scholar
  20. Dunn, A.J., Snijders, R., Hurd, R.W., and Kramarcy, N.R., 1982, Induction of catalepsy by central nervous system administration of neurotensin, Ann. N.Y. Acad. Sci., 400:345.PubMedCrossRefGoogle Scholar
  21. Edvinsson, L., Cervos-Navarro, J., Larsson, L.-I., Owman, C.H., and Ronnberg A.-L., 1977, Regional distribution of mast cells containing histamine, dopamine, or 5-hydroxytryptamine in the mammalian brain, Neurology, 27:878.PubMedGoogle Scholar
  22. Eisen, V.D., and Wilson, C.W.M., 1957, The effect of B-irradiation on skin histamine and vascular responses in the rat, J. Physiol., 136:122.PubMedGoogle Scholar
  23. Forcino, C.D., Cerveny, T.J., and Cockerham, L.G., 1986, Dose dependent postradiation changes in primate blood pressure and cerebral blood flow, Physiologist, 29:129.Google Scholar
  24. Gross, P.M., 1982, Cerebral histamine: Indications for neuronal and vascular regulation, J. Cereb. Blood Flow Metabol., 2:3.CrossRefGoogle Scholar
  25. Gross, P.M., Teascale, G.M., Angerson, W.J. and Harper, A.M. 1981, H2-receptors mediate increases in permeability of the blood-brain barrier during arterial histamine infusion, Brain Res., 210:396.PubMedCrossRefGoogle Scholar
  26. Henry, J.C., 1982, Electrophysiological Studies on the neuroactive properties of neurotensin, Ann. N.Y. Acad. Sci., 400:216.PubMedCrossRefGoogle Scholar
  27. Kirino, T., and Sano, K., 1984, Selective vulnerability in the gerbil hippocampus following ischemia, Acta Neuropathol., 62:201PubMedCrossRefGoogle Scholar
  28. Klatzo, I., Suzuki, R., Orzi, F., Schuier, F., and Nitsch, C., 1984, Pathomechanisms of ischemic brain edema, in: “Recent Progress in the Study and Therapy of Brain Edema,” K.G. Go, and A. Baathmann, eds., Plenum Press, New York.Google Scholar
  29. Lasser, E.C., and Stenstrom, K.W., 1954, Elevation of circulating blood histamine in patients undergoing deep roentgen therapy, Am. J. Roentgenology, 72:985.Google Scholar
  30. Parks, D.A., Bulkley, G.B., Granger, D.N., Hamilton, S.R., and McCord, J.M., 1982, Ischemic injury in the cat small intestine: Role of superoxide radicals, Gastroenterology, 82:9.PubMedGoogle Scholar
  31. Pluta, R., and Gajkowska, B., 1984, Ultrastructural changes in the sensomotor cortex of the rabbit after complete 30-min brain ischemia, J. Neurosci. Res., 11:35.PubMedCrossRefGoogle Scholar
  32. Rioux, F., Kerouac, R., and St-Pierre, S., 1985, Release of mast cell mediators, vasoconstriction and edema in the isolated, perfused head of the rat following intracarotid infusion of neurotensin, Neuropeptides, 6:1.PubMedCrossRefGoogle Scholar
  33. Somjen, G.G., 1983, The cycle of sleeping and waking, in “Neurophysiology — the Essentials,” Williams and Wilkins, Baltimore, MD.Google Scholar
  34. Suzuki, R., Yamaguchi, T., Li, C-L., and Klatzo, I., 1983, The effects of 5-minute ischemia in mongolian gerbils: II. Changes of spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus, Acta Neuropathol., 60:217.PubMedCrossRefGoogle Scholar
  35. Taylor, K.M., Gfeller, E., and Snyder, S.H., 1972, Regional localization of histamine and histidine in the brain of the rhesus monkey, Brain Res., 41:171.PubMedCrossRefGoogle Scholar
  36. van Wimersma Greidanus, Tj.B., van Praag, M.C.G., Kalimann, R., Rinkel, G.J.E., Croiset, G., Hoeke, E.C., van Egmond, M.A.H., and Fekete, M., 1982, Behavioral effects of neurotensin, Ann. N.Y. Acad. Sci., 400:319.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Lorris G. Cockerham
    • 1
  • C. Douglas Forcino
    • 2
  1. 1.Air Force Office of Scientific ResearchBolling AFBUSA
  2. 2.Armed Forces Radiobiology Research InstituteBethesdaUSA

Personalised recommendations