Skip to main content

Production of Secreted Proteins in Yeast

  • Chapter
Protein Production by Biotechnology

Abstract

Human serum albumin (HSA) is the largest single protein component of plasma1 where its role is to maintain normal osmolarity and to act as a carrier for numerous small molecules (including nutrients and metabolites) many of which would otherwise have low solubility or be poorly tolerated in free solution. Compounds which it is capable of binding include fatty acids, bilirubin and numerous drugs.2 Unlike many recombinant proteins currently being considered by the biotechnology industry, albumin is already sold and used in large quantities.3 It is prepared by fractionation of donated blood and is used in the treatment of patients requiring fluid replacement.4 It is used particularly in the treatment of burn victims, those suffering from traumatic shock and some special groups of surgical patients. However its use is much affected by the custom and practice of particular countries and the preference of individual doctors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peters, T. Jr, Serum Albumin. Adv. Prot. Chem., 37 (1985) 161–245.

    Article  CAS  Google Scholar 

  2. Kragh-Hansen, U., Molecular aspects of ligand binding to serum albumin. Pharmacol Rev., 33 (1981) 17–57.

    PubMed  CAS  Google Scholar 

  3. Klausner, A., Adjustment in the blood fraction market. Bio/Technology, 3 (1985) 119–25.

    Article  Google Scholar 

  4. Jeans, E. R. A., Marshall, P. J. & Lowe, C. R., Plasma protein fractionation. Trends Biotechnol., 3 (1985) 267–70.

    Article  CAS  Google Scholar 

  5. Meloun, B., Moravek, L. & Kostka, V., Complete amino acid sequence of human serum albumin. FEBS Lett., 58 (1975) 134–7.

    Article  PubMed  CAS  Google Scholar 

  6. Glaumann, H., Albumin secretory pathway in the hepatocyte. In Albumin Structure, Biosynthesis and Function, ed. T. Peters & I. Sjoholm. Pergamon Press, Oxford, 1978, pp. 41–50.

    Google Scholar 

  7. Andersson, L. O., Reduction and re-oxidation of the disulfide bonds of bovine serum albumin. Arch. Biochem. Biophys., 133 (1969) 277–85.

    Article  PubMed  CAS  Google Scholar 

  8. Kenten, J., Helm, B., Ishizaka, T., Cattini, P. & Gould, H., Properties of a human immunoglobulin epsilon-chain fragment synthesized in Escherichia coli. Proc. Natl. Acad. Sci. USA, 81 (1984) 2955–9.

    Article  CAS  Google Scholar 

  9. Emtage, J. S., Angal, S., Doel, M. T., Harris, T. J. R, Jenkins, B., Lilley, G. & Lowe, P. A., Synthesis of calf prochymosin (prorennin) in Escherichia coli. Proc. Nat. Acad. Sci., USA, 80 (1983) 3671–5.

    Article  CAS  Google Scholar 

  10. Simons, G., Remaut, E., Allet, B., Devos, R & Fiers, W., High-level expression of human interferon gamma in Escherichia coli under control of the pL promoter of bacteriophage lambda. Gene, 28 (1984) 55–64.

    Article  PubMed  CAS  Google Scholar 

  11. Latta, M., Knapp, M., Sarmientos, P., Brefort, G., Becquart, J., Guerrier, L., Jung, G. & Mayaux, J. F., Synthesis and purification of mature human serum albumin from Escherichia Coli. Bio/Technology, 5 (1987) 1309–14.

    CAS  Google Scholar 

  12. Hinchliffe, E., Kenny, E. & Leaker, A. J., Novel products from surplus yeast via recombinant DNA technology. In European Brewery Convention Symposium on Brewers Yeast Monograph XII. Verlag Hans Carl (Brauwelt-Verlag), Nurnberg, 1987, pp. 139–54.

    Google Scholar 

  13. Burton, S. J., Quirk, A. V & Wood, P. C, Refolding human serum albumin at relatively high protein concentration. Eur. J. Biochem., 179 (1989) 379–87.

    Article  PubMed  CAS  Google Scholar 

  14. Gray, G. L., Baldridge, J. S., McKeown, K. S., Heyneker, H. L. & Chang, C. N., Periplasmic production of correctly processed human growth hormone in Escherichia coli: natural and bacterial signal sequences are interchangeable. Gene, 39 (1985) 247–54.

    Article  PubMed  CAS  Google Scholar 

  15. Becker, G. W. & Hoiung, H. M., Expression, secretion and folding of human growth hormone in Escherichia coli. Purification and characterization. FEBS Lett., 204 (1986) 145–50.

    Article  PubMed  CAS  Google Scholar 

  16. Murray, R. G. E., Steed, P. & Elson, H. E., The location of the mucopeptide in sections of the cell wall of Escherichia coli and other Gram -ve bacteria. Can. J. Microbiol., 11 (1965) 547–60.

    Article  PubMed  CAS  Google Scholar 

  17. Novotny, A., Molecular aspects of endotoxic reactions. Bacteriol. Rev., 33 (1969) 72-98.

    Google Scholar 

  18. Saunders, C. W., Schmidt, B. J., Mallonee, K. L. & Guyer, M. S., Secretion of human serum albumin from Bacillus subtilis. J. Bacteriol., 169 (1987) 2917–25.

    CAS  Google Scholar 

  19. Schekman, R. & Novick, P., The secretory process and yeast cell-surface assembly. In The Molecular Biology of the Yeast Saccharomyces: Metabolism & Gene Expression, ed. J. N. Strathern, E. W. Jones & J. R. B. Broach. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982, pp. 361–98.

    Google Scholar 

  20. Burrows, S., Baker’s yeast. In The Yeasts Vol. 3, ed. A. H. Rose & J. S. Harrison. Academic Press, New York, 1970, pp. 349–420.

    Google Scholar 

  21. Fiechter, A, Fuhrmann, G. F. & Kappeli, O., Regulation of glucose metabolism in growing yeast cells. Adv. Microb. Physiol., 22 (1981) 123–83.

    Article  PubMed  CAS  Google Scholar 

  22. Kingsman, S., Wilson, M. J., Cousens, D. J. & Hinchliffe, E., Yeast promoter. British Patent Application GB 8720396, 1986.

    Google Scholar 

  23. Condra, J. H., Ellis, R. W., Jones, R. E. & Schultz, L. D., Expression of recombinant proteins in yeast. European Patent Application EP0234862, 1987.

    Google Scholar 

  24. De Deken, R. H., The Crabtree effect: a regulatory system in yeast. J. Gen. Microbiol, 44 (1966) 149–56.

    PubMed  Google Scholar 

  25. Sonnlietner, B. & Kaeppeli, O., Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis. Biotechnol. Bioeng., 28 (1986) 9273–37.

    Google Scholar 

  26. Crabtree, H. G., Observations on the carbohydrate metabolism of tumors. Biochem. J., 23 (1929) 536–45.

    PubMed  CAS  Google Scholar 

  27. von Meyenburg, K. H., Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth. Arch. Microbiol., 66 (1969) 289–303.

    Google Scholar 

  28. Fiechter, A. & von Meyenburg, K. H., Automatic analysis of gas exchange in microbial systems. Biotech. Bioengng 10 (1968) 535–49.

    Article  CAS  Google Scholar 

  29. Lloyd, D., Kristensen, B. & Degn, H., Glycolyis and respiration in yeasts: the effect of ammonium ions studied by mass spectrometry. J. Gen. Microbiol., 129 (1983) 2125–7.

    CAS  Google Scholar 

  30. Wang, H. Y, Cooney, C. L. & Wang, D. I. C, Computer control of bakers’ yeast production. Biotechnol. Bioengng, 21 (1979) 975–95.

    Article  CAS  Google Scholar 

  31. Walter, P., Signal recognition. Two receptors act sequentially. Nature, 328 (1987) 763–4.

    Article  PubMed  CAS  Google Scholar 

  32. Verner, K. & Schatz, G., Protein translocation across membranes. Science, 241 (1988) 1307–13.

    Article  PubMed  CAS  Google Scholar 

  33. Walter, P. & Lingpappa, V., Mechanism of protein translocation across the endoplasmic reticulum membrane. Ann. Rev. Cell Biol., 2 (1986) 499–516.

    Article  PubMed  CAS  Google Scholar 

  34. Rapoport, T. A., Protein translocation across and integration into membranes. CRC Crit. Rev. Biochem., 20 (1986) 73–137.

    Article  PubMed  CAS  Google Scholar 

  35. Blobel, G. & Dobberstein, B., Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell Biol., 67 (1975) 835–51.

    Article  PubMed  CAS  Google Scholar 

  36. Walter, P., Ibrahimi, I. & Blobel, G., Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein. J. Cell Biol., 91 (1981) 545–50.

    Article  PubMed  CAS  Google Scholar 

  37. Gilmore, R., Blobel, G. & Walter, P., Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle. J. Cell Biol., 95 (1982) 463–9.

    Article  PubMed  CAS  Google Scholar 

  38. Schatz, G., Protein translocation: a common mechanism for different membrane systems. Nature, 321 (1986) 108–9.

    Article  PubMed  CAS  Google Scholar 

  39. Baker, R. K., Bentivoglio, G. P. & Lively, M. O., Partial purification of microsomal signal peptidase from hen oviduct. J. Cell Biochem., 32 (1986) 193–200.

    Article  PubMed  CAS  Google Scholar 

  40. Bohni, P. C., Deshaies, R. J. & Schekman, R. W., SEC11 is required for signal peptide processing and yeast cell growth. J. Cell Biol., 106 (1988) 1035–42.

    Article  PubMed  CAS  Google Scholar 

  41. Peters, T. & Davidson, L. K., The biosynthesis of rat serum albumin. In vivo studies on the formation of the disulfide bonds. J. Biol Chem., 257 (1982) 8847–53.

    PubMed  CAS  Google Scholar 

  42. Lang, K. & Schmid, F. X., Protein-disulphide isomerase and prolyl isomerase act differently and independently as catalysts of protein folding. Nature, 331 (1988) 453–5.

    Article  PubMed  CAS  Google Scholar 

  43. Fuchs, S., De Lorenzo, F. & Anfinsen, C. B., Studies on the mechanism of the enzymic catalysis of disulfide interchange in proteins. J. Biol. Chem., 242 (1967) 398–402.

    PubMed  CAS  Google Scholar 

  44. Fischer, G., Bang, H. & Mech, C, Determination of enzymatic catalysis for the cis-trans-isomerization of peptide binding in proline-containing peptides. Biochim. Biophys. Acta, 43 (1984) 1101–11.

    CAS  Google Scholar 

  45. Julius, D., Schekman, R. & Thorner, J., Glycosylation and processing of prepro-alpha-factor through the yeast secretory pathway. Cell, 36 (1984) 309–18.

    Article  PubMed  CAS  Google Scholar 

  46. Rothman, J. E. & Lodish, H. F., Synchronised transmembrane insertion of glycosylation of a nascent membrane protein. Nature, 269 (1977) 775–80.

    Article  PubMed  CAS  Google Scholar 

  47. Berger, M. & Schmidt, F., Protein fatty acyltransferase is located in the rough endoplasmic reticulum. FEBS Lett., 187 (1985) 289–94.

    Article  PubMed  CAS  Google Scholar 

  48. Pfeffer, S. R. & Rothman, J. E., Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Ann. Rev. Biochem., 56 (1987) 829–52.

    Article  PubMed  CAS  Google Scholar 

  49. Rose, J. K. & Doms, R. W., Regulation of protein export from the endoplasmic reticulum. Ann. Rev. Cell Biol., 4 (1988) 257–88.

    Article  PubMed  CAS  Google Scholar 

  50. Schekman, R., Protein localization and membrane traffic in yeast. Ann. Rev. Cell Biol., 1 (1985) 115–43.

    Article  PubMed  CAS  Google Scholar 

  51. Das, R. C. & Shultz, J. L., Secretion of heterologous proteins from Saccharomyces cerevisiae. Biotechnol. Progress, 3 (1987) 43–8.

    Article  CAS  Google Scholar 

  52. Kurjan, J. & Herskowitz, I., Structure of a yeast pheromone (MF alpha): a putative alpha-factor precursor contains four tandem copies of mature alpha-factor. Cell., 30 (1982) 933–43.

    Article  PubMed  CAS  Google Scholar 

  53. Julius, D., Brake, A., Blair, L., Kunisawa, R. & Thorner, J., Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-alpha-factor. Cell, 37 (1984) 1075–89.

    Article  PubMed  CAS  Google Scholar 

  54. Julius, D., Blair, L., Brake, A., Sprague, G. & Thorner, J., Yeast alpha factor is processed from a larger precursor polypeptide: the essential role of a membrane-bound dipeptidyl aminopeptidase. Cell., 32 (1983) 839–52.

    Article  PubMed  CAS  Google Scholar 

  55. Achstetter, T. & Wolf, D. H., Hormone processing and membrane-bound proteinases in yeast. EMBO J., 4 (1985) 173–7.

    PubMed  CAS  Google Scholar 

  56. Bitter, G. A, Chen, K. K., Banks, A. R. & Lai, P.-H., Secretion of foreign proteins from Saccharomyces cerevisiae directed by alpha-factor gene fusions. Proc. Nat. Acad. Sci., USA, 81 (1984) 5330–4.

    Article  CAS  Google Scholar 

  57. Zsebo, K. M., Lu, H.-S., Fieschko, J. C, Goldstein, L., Davis, J., Duker, K., Suggs, S. V., Lai, P.-H. & Bitter, G. A., Protein secretion from Saccharomyces cerevisiae directed by alpha-factor leader region. J. Biol Chem., 261 (1986) 5858–65.

    PubMed  CAS  Google Scholar 

  58. Carter, B. L. A, Doel, S., Goodey, A. R., Piggot, J. R. & Watson, M. E. W., Secretion of mammalian polypeptides by yeast. Microbiol. Sci., 3 (1986) 23–7.

    PubMed  CAS  Google Scholar 

  59. Sleep, D., Belfield, G. P. & Goodey, A. R., The secretion of human serum albumin by Saccharomyces cerevisiae. Yeast, 4 (1988 Spec. Iss.) S168.

    Google Scholar 

  60. Dugaiczyk, A, Law, S. W. & Dennison, O. E., Nucleotide sequence and the encoded amino acids of human serum albumin mRNA. Proc. Nat. Acad. Sci., USA, 79 (1982) 71–5.

    Article  CAS  Google Scholar 

  61. Brennan, S. O., Owen, M. C, Boswell, D. R., Lewis, J. H. & Carrell, R. W., Circulating proalbumin associated with a variant proteinase inhibitor. Biochim. Biophys. Acta, 802 (1984) 24–8.

    PubMed  CAS  Google Scholar 

  62. Brennan, S. O. & Carrell, R. W., A circulating variant of human proalbumin. Nature, 274 (1978) 908–9.

    Article  PubMed  CAS  Google Scholar 

  63. Bathurst, I. C., Brennan, S. O., Carrell, R. W., Cousens, L. S., Brake, A. I. & Barr, P. J., Yeast KEX2 protease has the properties of a human proalbumin converting enzyme. Science, 235 (1987) 348–50.

    Article  PubMed  CAS  Google Scholar 

  64. Sleep, D., Belfield, G. P. & Goodey, A. R., The secretion of human serum albumin by the yeast Saccharomyces cerevisiae. Bio/Technology, (submitted).

    Google Scholar 

  65. Futcher, A. B. & Cox, B. S., Maintenance of the 2-micron circle plasmid in populations of Saccharomyces cerevisiae. J. Bacteriol., 154 (1984) 612–22.

    Google Scholar 

  66. Broach, J. R., Construction of high copy yeast vectors fusing 2-micron circle sequences. Methods Enzymol., 101 (1983) 307–25.

    Article  PubMed  CAS  Google Scholar 

  67. Tubb, R. S., 2-micron DNA plasmid in brewery yeasts. J. Inst. Brew., 86 (1980) 78–80.

    CAS  Google Scholar 

  68. Broach, J. R., The yeast plasmid 2-micron circle. In The Molecular Biology of the Yeast Saccharomyces Life Cycle & Inheritance, ed. J. N. Strathern, E. W. Jones & J. R. B. Broach. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1981, pp. 445–70.

    Google Scholar 

  69. Futcher, A. B. & Cox, B. S., Copy number and the stability of 2-micron circle-based artificial plasmids of Saccharomyces cerevisiae. J. Bacteriol., 157 (1984) 283–90.

    CAS  Google Scholar 

  70. Jayaram, M, Sutton, A., & Broach, J. R., Properties of REP3: a cis-acting locus required for stable propagation of the Saccharomyces cerevisiae plasmid 2-microns circle. Mol. Cell Biol., 5 (1985) 2466–75.

    PubMed  CAS  Google Scholar 

  71. Kikuchi, Y., Yeast plasmid requires a cis-acting locus and two plasmid proteins for its stable maintenance. Cell, 35 (1983) 487–93.

    Article  PubMed  CAS  Google Scholar 

  72. Beggs, J. D., Multiple-copy yeast plasmid vectors. Alfred Benzon Symposium, 16 (1981) 383–95.

    Google Scholar 

  73. Murray, A. W. & Szostak, J. W., Pedigree analysis of plasmid segregation in yeast. Cell, 34 (1983) 961–70.

    Article  PubMed  CAS  Google Scholar 

  74. Cashmore, A. M., Albury, M. S., Hadfield, C. & Meacock, P. A, Genetic analysis of partitioning functions encoded by the 2 μm circle of Saccharomyces cerevisiae. Mol. Gen. Genet., 203 (1986) 154–62.

    Article  CAS  Google Scholar 

  75. Jayarum, M., Li, Y. Y. & Broach, J. R., The yeast plasmid 2 μm circle encodes components required for its high copy propagation. Cell., 34 (1983) 95–104.

    Article  Google Scholar 

  76. Futcher, A. B., The 2-micron circle plasmid of Saccharomyces cerevisiae. Yeast, 4 (1988) 27–40.

    Article  PubMed  CAS  Google Scholar 

  77. Chinery, S. A & Hinchliffe, E., The stable maintenance of 2-micron plasmids in yeast: a new class of vector. Yeast, 4 (1988 Spec. Iss.) S123.

    Google Scholar 

  78. Guerineau, M., Grandchamp, C. & Slonimski, P., Circular DNA of a yeast episome with two inverted repeats: structural analysis by a restriction enzyme and electron microscopy. Proc. Nat Acad. Sci., USA, 73 (1976) 3030–4.

    Article  CAS  Google Scholar 

  79. Hartley, J. L. & Donelson, J. E., Nucleotide sequence of the yeast plasmid. Nature, 286 (1980) 860–5.

    Article  PubMed  CAS  Google Scholar 

  80. Blanc, H., Gerbaud, C., Slonimski, P. & Guerineau, M., Stable yeast transformation with chimeric plasmids using a 2-micron-circular DNA-less strain as a recipient. Mol. Gen. Genet., 176 (1979) 335–42.

    Article  PubMed  CAS  Google Scholar 

  81. Broach, J. R. & Hicks, J. B., Replication and recombination functions associated with the yeast plasmid, 2μ circle. Cell., 21 (1980) 501–8.

    Article  PubMed  CAS  Google Scholar 

  82. Gubbins, E. J., Newlon, C. S., Kann, M. D. & Donelson, J. E., Sequence organization and expression of a yeast plasmid DNA. Gene, 1 (1977) 185–207.

    Article  PubMed  CAS  Google Scholar 

  83. Fuchter, A. B., Copy number amplification of the 2-micron circle plasmid of Saccharomyces cerevisiae. J. Theor. Biol., 119 (1986) 197–204.

    Article  Google Scholar 

  84. Volkert, F. C. & Broach, J. R., Site-specific recombination promotes plasmid amplification in yeast, Cell., 46 (1986) 541–50.

    Article  PubMed  CAS  Google Scholar 

  85. Murray, J. A, Scarpa, M., Rossi, N. & Cesareni, G., Antagonistic controls regulate copy number of the yeast 2 μ plasmid. EMBO J., 6 (1987) 4205–12.

    PubMed  CAS  Google Scholar 

  86. Reynolds, A. E., Murray, A. W. & Szostak, J. W., Roles of the 2-micron gene products in stable maintenance of the 2-micron plasmid of Saccharomyces cerevisiae. Mol. Cell Biol., 7 (1987) 3566–73.

    PubMed  CAS  Google Scholar 

  87. Som, T., Armstrong, K. A, Volkert, F. C. & Broach, J. R., Autoregulation of 2-micron circle gene expression provides a model for maintenance of stable plasmid copy levels. Cell., 52 (1988) 27–37.

    Article  PubMed  CAS  Google Scholar 

  88. McLeod, M., Craft, S. & Broach, J. R., Identification of the crossover site during FLP-mediated recombination in the Saccharomyces cerevisiae plasmid 2-microns circle. Mol. Cell Biol., 6 (1986) 3357–67.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Collins, S.H. (1990). Production of Secreted Proteins in Yeast. In: Harris, T.J.R. (eds) Protein Production by Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1565-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1565-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8858-9

  • Online ISBN: 978-1-4613-1565-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics