Expression Systems and Protein Production in Filamentous Fungi

  • Geoffrey Turner

Abstract

Filamentous fungi have been of both academic and commercial interest for many years. The last few years have seen the techniques of genetic manipulation extended to a wide range of filamentous fungi. Initially, work was carried out with the genetically well characterised fungi such as Aspergillus nidulans and Neurospora crassa, but there has been a growing interest in application of these techniques to commercially important fungi. Antibiotics (Penicillium chrysogenum, Cephalosporium acremonium), organic acids (Aspergillus niger, Aspergillus terreus) and enzymes (A. niger, A. oryzae, A. awamori, Trichoderma reesei) are the major economically important products from fungi, and application of molecular techniques is seen as a way of either improving current processes or using the fungi as hosts for production of heterologous proteins. Fungi already used for pharmaceutical or food products are seen to have a commercial advantage for heterologous protein production in that they enjoy the GRAS (Generally Regarded As Safe) status from the US Food and Drug Administration (FDA).

Keywords

Cellulose Starch Xylose Amylase Plasminogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knowles, J., Lehtovaara, P., Pentilla, M., Teeri, T., Harkki, A. & Salovuori, I., The cellulase genes of Trichoderma. Antonie van Leeuwenhoek J. Microbiol., 53 (1987) 335–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Turner, G. & Ballance, D. J., Transformation of Aspergillus nidulans. In Genetic Manipulation of Filamentous Fungi, ed. J. W. Bennett & L. Lasure. Academic Press, New York, 1985, pp. 259–78.Google Scholar
  3. 3.
    Rambosek, J. A. & Leach, J., Recombinant DNA in filamentous fungi: progress and prospects. CRC Crit. Rev. Biotechnol., 6 (1987) 357–93.CrossRefGoogle Scholar
  4. 4.
    Fincham, J. R. S., Transformation in fungi. Microbiol. Rev., 53 (1989) 148–70.PubMedGoogle Scholar
  5. 5.
    van Heeswijck, R., Autonomous replication of plasmids in Mucor transformants. Carlsberg Res. Comm., 51 (1986) 433–43.CrossRefGoogle Scholar
  6. 6.
    Clements, J. M. & Roberts, C. F., Molecular cloning of the 3-phosphoglycerate kinase (PGK) gene from Aspergillus nidulans. Curr. Genet., 9 (1985) 293–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Punt, P. J., Dingemans, M. A., Jacobs-Mijesing, B. J. M., Pouwels, P. H. & van den Hondel, C. A. M. J. J., Isolation and characterization of the glyceraldehyde-3-phosphate dehydrogenase gene of Aspergillus nidulans. Gene, 69 (1988) 49–57.PubMedCrossRefGoogle Scholar
  8. 8.
    Ward, M. & Turner, G., The ATP synthase subunit 9 gene of Aspergillus nidulans: sequence and transcription. Molec. Gen. Genet., 205 (1986)331–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Ward, M., Wilson, L., Carmona, C. & Turner, G., The oliC3 gene of Aspergillus niger: isolation, sequence, and use as a selectable marker. Curr. Genet., 14 (1988) 37–42.PubMedCrossRefGoogle Scholar
  10. 10.
    van Gorcom, R. F. M., Punt, P. J., Pouwels, P. J. & van den Hondel, C. A. M. J. J., A system for the analysis of expression signals in Aspergillus. Gene, 48 (1986) 211–17.PubMedCrossRefGoogle Scholar
  11. 11.
    Kolar, M., Punt, P. J., van den Hondel, C. A. M. J. J. & Schwab, H., Transformation of Penicillium chrysogenum using dominant selection markers and expression of an Escherichia coli lacZ fusion gene. Gene, 62 (1988) 127–34.PubMedCrossRefGoogle Scholar
  12. 12.
    Pateman, J. H., Doy, C. H., Olson, J. E., Norris, U., Creaser, E. H. & Hynes, M. J., Regulation of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldDH) in Aspergillus nidulans. Proc. Roy. Soc. Lond., B217 (1983) 243–64.CrossRefGoogle Scholar
  13. 13.
    Gwynne, D. I., Buxton, F. P., Sibley, S., Davies, R. W., Lockington, R. A., Scazzocchio, C. & Sealy-Lewis, H. M., Comparison of the cis-acting control regions of two coordinately controlled genes involved in ethanol utilization in Aspergillus nidulans. Gene, 51 (1987) 205–16.PubMedCrossRefGoogle Scholar
  14. 14.
    Gwynne, D. I., Buxton, F. P., Gleeson, M. A. & Davies, R. W., In Protein Purification: Micro to Macro, ed. R Burgess, Alan R Liss, New York, 1987, pp. 355–65.Google Scholar
  15. 15.
    Cullen, D., Gray, G. L., Wilson, L. J., Hayenga, K. J., Lamsa, M. H., Rey, M. W., Norton, S. & Berka, R. M., Controlled expression and secretion of bovine chymosin in Aspergillus nidulans. Biotechnology, 5 (1987) 369–76.CrossRefGoogle Scholar
  16. 16.
    Gwynne, D. I., Buxton, F. P., Williams, S. A., Garven, S. & Davies, R W., Genetically engineered secretion of active human interferon and a bacterial endoglucanase from Aspergillus nidulans. Biotechnology, 5 (1987) 713–19.CrossRefGoogle Scholar
  17. 17.
    Christensen, T., Woeldike, H., Boel, E., Mortensen, S. B., Hjortshoej, K., Thim, L. & Hansen, M. T., High level expression of recombinant genes in Aspergillus oryzae. Biotechnology, 6 (1988) 1419–22.CrossRefGoogle Scholar
  18. 18.
    Rowlands, R. T., Industrial strain improvement: mutagenesis and random screening procedures. Enzyme Microb. Technol., 6 (1984) 3–10.CrossRefGoogle Scholar
  19. 19.
    Finkelstein, D. B., Rambosek, J. A., Leach, J., Wilson, R. E., Larson, A. E., McAda, P. C., Soliday, C. L. & Ball, C., Genetic transformation and protein secretion in industrial filamentous fungi. In Fifth International Symposium on the Genetics of Industrial Microorganisms, ed. M. Alacevic, D. Hranueli & Z. Toman, GIM’86, Jugoslavia. Pliva, Zagreb, 1986, pp. 101–11.Google Scholar
  20. 20.
    Smith, D. J., Bull, J. H., Edwards, J. & Turner, G., Amplification of the isopenicillin N synthetase gene in a strain of Penicillium chrysogenum producing high levels of penicillin. Molec. Gen. Genet., 216 (1989) 492–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Henrissat, B., Driguez, H., Viet, C. & Schulein, M., Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Biotechnology, 3 (1988) 722–6.Google Scholar
  22. 22.
    Upshall, A., Kumar, A. A., Bailey, M. C., Parker, M. D., Favreau, M. A., Lewison, K. P., Joseph, M. L., Maroganore, J. M. & McKnight, G. L., Secretion of active human tissue plasminogen activator from the filamentous fungus Aspergillus nidulans. Biotechnology, 5 (1987) 1301–4.CrossRefGoogle Scholar
  23. 23.
    Ward, M., Chymosin production in Aspergillus. In Molecular Industrial Mycology: Systems and Applications, ed. S. A. Leong & R. M. Berka. Marcel Dekker, 1989, in press.Google Scholar
  24. 24.
    Lamsa, M. & Bloebaum, P., Mutation and screening to increase chymosin yield in a genetically-engineered strain of Aspergillus awamori. J. Industr. Microbiol. (in press).Google Scholar
  25. 25.
    Berka, R. M., Ward, M., Wilson, L. J., Hayenga, K. J., Fong, K. K., Carlomagno, L. P. & Thompson, S. A., Molecular cloning and deletion of the Aspergillopepsin A gene from Aspergillus awamori. Gene (submitted).Google Scholar
  26. 26.
    Ballance, D. J., Buxton, F. P. & Turner, G., Transformation of Aspergillus nidulans by the orotidine-5′-phosphate decaboxylase gene of Neurospora crassa. Biochem. Biophys. Res. Commun., 112 (1983) 284–9.CrossRefGoogle Scholar
  27. 27.
    Mattern, I. E., Pouwels, P. H. & van den Hondel, C. A. M. J. J., Transformation of Aspergillus oryzae using the A. niger pyrG gene. Molec. Gen. Genet., 210 (1987) 460–1.PubMedCrossRefGoogle Scholar
  28. 28.
    John, M. A. & Peberdy, J. F., Transformation of Aspergillus nidulans using the argB gene. Enzyme Microb. Technol., 6 (1984) 386–9.CrossRefGoogle Scholar
  29. 29.
    Buxton, F. P., Gwynne, D. I. & Davies, R. W., Transformation of Aspergillus niger using the argB gene of Aspergillus nidulans. Gene, 37 (1985) 207–14.PubMedCrossRefGoogle Scholar
  30. 30.
    Tilburn, J., Scazzocchio, C., Taylor, G. G., Zabricky-Zissman, J. H., Lockington, R. A. & Davies, R. W., Transformation by integration in Aspergillus nidulans. Gene, 26 (1983) 205–21.PubMedCrossRefGoogle Scholar
  31. 31.
    Kelly, J. M. & Hynes, M. J., Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J., 4 (1985) 475–9.PubMedGoogle Scholar
  32. 32.
    Beri, R. K. & Turner, G., Transformation of Penicillium chrysogenum using the Aspergillus nidulans amdS gene as a dominant selective marker. Curr. Genet, 11 (1987) 639–41.PubMedCrossRefGoogle Scholar
  33. 33.
    Ward, M., Wilkinson, B. & Turner, G., Transformations of Aspergillus nidulans with a cloned, oligomycin-resistant ATP synthase subunit 9 gene. Mol. gen. Genet, 202 (1986) 265–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Bull, J. H., Smith, D. & Turner, G., Transformation of Aspergillus nidulans with a cloned, oligomycin-resistant ATP synthetase subunit 9 gene. Curr. Genet., 13 (1988) 377–82.PubMedCrossRefGoogle Scholar
  35. 35.
    Orbach, M. J., Porro, E. B. & Yanofsky, C., Cloning and characterisation of the gene for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Molec. Cell Biol., 6 (1986) 2452–61.PubMedGoogle Scholar
  36. 36.
    Punt, P. J., Oliver, R. P., Dingemanse, M. A., Pouwels, P. H. & van den Hondel, C. A. M. J. J., Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene, 56 (1987) 117–24.PubMedCrossRefGoogle Scholar

Copyright information

© Elsevier Science Publishers Ltd 1990

Authors and Affiliations

  • Geoffrey Turner
    • 1
  1. 1.Department of Microbiology, Medical SchoolUniversity of BristolUK

Personalised recommendations