Skip to main content

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 109))

  • 116 Accesses

Abstract

In the preceding four chapters, we presented the analysis and design of GaAs logic circuits of different families: enhancementdepletion (ED) logic, transmission-gate logic, buffered ED logic, and source-coupled logic. In this concluding chapter, we shall present examples of systems design based on the GaAs technology. From the previous studies, four characteristics of GaAs circuits can be identified that are important in system design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.F.E. Owen, PCM and Digital Transmission Systems. New York: McGraw-Hill Book Company, 1982. Chapter 8.

    Google Scholar 

  2. Defu Luan and O. Wing, “Design of a GaAs 4x4 cross-point switch,” Proceedings of International Conference on Circuits and Systems, Nanjing, China, 1989, pp. 53–56.

    Google Scholar 

  3. Y. Shimazu and T. Takada, “High speed time switch using GaAs LSI technology,” IEEE Journal on Selected Areas in Communications, Vol. SAC-4, No. 1, January 1986, pp. 32–38.

    Article  Google Scholar 

  4. T. Mizoguchi, N. Toyoda, K. Kamazawa, Y. Ikawa, T. Terada, M. Mochizuki and A. Hojo, “A GaAs 4K bit static RAM with normally on and off combination circuit,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1984, pp. 117–120.

    Google Scholar 

  5. S. Takano, H. Makino, N. Tanino, M. Noda, K. Nishtani and S. Kayano, “A GaAs 16K SRAM with a single 1-V supply,” IEEE Journal of Solid State Circuits, Vol. SC-22, No. 5, October 1987, pp. 699–703.

    Article  Google Scholar 

  6. H. Makino, S. Matsue, M. Noda, N. Tanino, S. Takano, K. Nishitani and S. Kayano, “A 7ns/850mW GaAs 4Kb SRAM fully operative at 75°C,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1988, pp. 71–74.

    Google Scholar 

  7. T. Hayashi, H. Tanaka, H. Yamashita, N. Masuda, T. Doi, J. Shigata, N. Kotera, A. Masaki and N. Hashimoto, “Small access time scattering GaAs SRAM technology using bootstrap circuits,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1985, pp. 199–202.

    Google Scholar 

  8. S. Sze, Physics of Semiconductor Devices. New York: Wiley Interscience, 1981, p. 749.

    Google Scholar 

  9. D. Heigmant and N. Binet, “A high performance 1.8 GHz strobed comparator for A/D converter,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1983, pp. 66–69.

    Google Scholar 

  10. T. Nguyen, F. Thomas, S. Rugged, M. Le Paih, J.M. Uro, F. Debrie, I. Dean and M. Gloanec, “A 4-bit full Nyquist 1 G Sample/s monolithic GaAs ADC with on-chip S/H and error correction,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1988, pp. 195–198.

    Google Scholar 

  11. E. S. Yang, Microelectronic Devices. New York: McGraw-Hill Book Company, 1988, pp. 404–405.

    Google Scholar 

  12. J. E. Bowers, “High speed semiconductor laser design and performance,” Solid State Electronics, Vol. 30, No. 1, 1987, pp. 1–11.

    Article  MathSciNet  Google Scholar 

Cross-point Switches

  1. C. J. Andersen, “A GaAs MESFET 16x16 crosspoint switch at 1700 Mb/s,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1988, pp. 91–94.

    Google Scholar 

  2. H. M. Park and H. C. Ki, “A GaAs MESFET 16x8 crosspoint switch,” IEEE International Solid State Circuits Conference Digest of Technical Papers, 1989, pp. 146–147.

    Google Scholar 

  3. T. Iakada, Y. Shimazu, K. Yamasaki, M. Togashi, K. Hoshikawa and M. Idda, “A 2 Gb/s throughput GaAs digital time switch LSI using LSCFL,” IEEE Microwave and Millimeter Wave Monolithic Circuit Symposium Proceedings, 1985, pp. 22–26.

    Google Scholar 

  4. S. Hayano, K. Nagashima, S. Asai, T. Maeda and T. Furutsuka, “A GaAs 8x8 matrix switch LSI for high-speed digital communications,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1987, 00. 145–148.

    Google Scholar 

  5. G.W. Dick, R. F. Huisman, Y. K. Jhee, R. A. Nordin, W. A. Payne and K. W. Wyatt, “2.4 Gb/s GaAs 8x8 time multiplexed switch integrated circuit,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1989, pp. 101–104.

    Google Scholar 

Laser Drivers

  1. N. Kotera, K. Yamashita, Y. Hatta, T. Kinoshita, M. Miyazaki and M. Maeda,“Laser Driver and receiver amplifiers for 2.4 Gb/s optical transmission using WSi-GaAs MESFETs,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1987, pp. 103–106.

    Google Scholar 

  2. Y. Suzuki, H. Hida, T. Suzaki, S. Fujita, Y. Ogawa, A. Okamoto, T. Toda and T. Nozaki, “A 10-Gb/s laser driver IC with i-AlGaAs/n-GaAs doped-channel hetero-MISFETs (DMTs),” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1989, pp. 129–132.

    Google Scholar 

A/D and D/A

  1. K. de Graaf and K. Fawcett, “GaAs technology for analog-todigital conversion,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1986, pp. 205–208.

    Google Scholar 

  2. G.S. LaRue, “A GHz GaAs digital to analog converter,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1983, pp. 70–3.

    Google Scholar 

  3. K-C Hsieh, T. A. Knotts and G. L. Balwin, “A GaAs 12-bit digital to analog converter,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1985, pp. 187–190.

    Google Scholar 

  4. T. Ducourant, J. Baelde, M. Binet and C. Rocher, “1-GHz, 16mW, 2-bit analog to digital GaAs converter,” IEEE Journal of Solid State Circuits, Vol. SC-21, No. 3, June 1986, pp. 453–456.

    Article  Google Scholar 

  5. T. Ducourant, M. Binet, J. Baelde, C. Rocher and J. Gibereau, “3 GHz, 150mW, 4-bit GaAs analog to digital converter,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1986, pp. 209–212.

    Google Scholar 

  6. T. Ducourant, D. Meignant and P. Bertsch, “A 5-bit, 2.2 Gs/s monolithic A/D converter with GigaHertz bandwidth, and 6-bit A/D converter systems,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1989, pp. 337–340.

    Google Scholar 

  7. F. Weiss, “A 1Gs/s 8-bit GaAs DAC with on-chip current sources,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1986, pp. 217–220.

    Google Scholar 

  8. J. Naber, H. Singh and R. Sadler, “A low-power, high-speed 4-bit GaAs ADC and 5-bit DAC,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1989, pp. 333–336.

    Google Scholar 

  9. J. Kleks, C. Robertson, M. Englekirk, K. Fawcett, C. Saunders, M. Listvan, K. Tan and H. Chung, “A 4-bit single chip analog to digital converter with 1.0 GHz analog input bandwidth,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1987, pp. 79–82.

    Google Scholar 

  10. K. Wang, P. Asbeck, M. Chang, G. Sullivan and D. Miller, “A 4-bit quantizer implemented with AlGaAs/GaAs heterojunction bipolar transistors,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1987, pp. 83–86.

    Google Scholar 

  11. B. Wong and K. Fawcett, “A precision dual bridge GaAs sample and hold,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1987, pp. 87–90.

    Google Scholar 

  12. A. Oki, M. Kim, J Camou, C. Robertson, G. Gorman, K. Weber, L. Hobrock, S. Southwell and B. Oyama, “High performance GaAs/AlGaAs heterojunction bipolar transistor 4-bit and 2-bit A/D converters and 8-bit D/A converter,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1987, pp. 137–140.

    Google Scholar 

Prescalers and Dividers

  1. S. Shimizu, Y. Kamatani, N. Toyoda, K. Kanazawa, M. Mochizuki, T. Terada and A. Hojo, “A 1 GHz 50 mW GaAs Dual modulus divider IC,” IEEE Journal of Solid State Circuits, Vol. SC-19, No. 5, October 1984, pp. 710–715.

    Article  Google Scholar 

  2. M. Rocchi, B. Chantepie, B. Gabillard, G. Haldermann, J. Debost, J. Andriex and F. Robert, “A 1.2 GHz frequency synthesizer using a GaAs 20/21/22/23/24 modulus divider,” IEEE International Solid State Circuits Conference Digest of Technical Papers, 1985, pp. 26–27.

    Google Scholar 

  3. Y. Kamatani, S. Shimizu, N. Uchitomi, K. Kawakyo, M. Mochizuki, and A. Hojo, “Divide by 128/129 5 mW 400 MHz band GaAs prescaler IC,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1985, pp. 179–182.

    Google Scholar 

  4. S. Saito, T. Takada and N. Kato, “A 5 mW 1 GHz GaAs dualmodulus prescaler IC,” IEEE Journal of Solid State Circuits, Vol. SC-21, No. 4, August 1986, pp. 538–543.

    Article  Google Scholar 

  5. T. Sugeta, “A 13 GHz GaAs dynamic frequency divider and prescaler IC,” IEEE International Solid State Circuit Conference Digest of Technical Papers, 1985, pp. 198–199.

    Google Scholar 

  6. J. Jensen, L. Salmon, D. Deakin and M. Delancy, “26-GHz GaAs room temperature dynamic divider circuit,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1987, pp. 201–204.

    Google Scholar 

  7. H. Singh, R. Sadler, A. Geissberger, W. Tanis and E. Schineller, “High-speed, low-power GaAs programmable counters for synthesizer applications,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1987, pp. 269–272.

    Google Scholar 

  8. M. G. Kane, P. Y. Chan, S. S. Cherensky and D. C. Fowlis, “1.5-GHz programmable divide-by-N GaAs counter,” IEEE Journal of Solid State Circuits, Vol. SC-23, No. 2, 1988, pp. 480–484.

    Article  Google Scholar 

  9. J. F. Jensen, U. K. Mishra, A. S. Brown, R. S. Beaubien, M. A. Thompson and L. M. Jelloian, “25 GHz static frequency dividers in AlGaAs/GaAs HEMT technology,” IEEE International Solid State Circuits Conference Digest of Technical Papers, 1988, pp. 266–267.

    Google Scholar 

  10. K. Fujita, H. Itoh and R. Yamamoto, “A 15.6 GHz commercially based 1/8 GaAs synamic prescaler,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1989, pp. 113–116.

    Google Scholar 

  11. I. Saito, H.I. Fujishiro, T. Ichioka, K. Tanaka, S. Nishi and Y. Sano, “0.2 µM gate inverted HEMTs for an ultra-high speed DCFL frequency divider,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1989, pp. 117–120.

    Google Scholar 

ALUs and Multipliers

  1. W. R. Leung, Y. K. Lo, Y. T. Oh, W. A. Oswald, E. K. Poon, C. E. Reid, L. E. Ackner and T. C. Poon, “2K gate circuits with 125 ps gate delay using GaAs HFET technology,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1989, pp. 57–60.

    Google Scholar 

  2. C. G. Ekroot, and S. I. Long, “A GaAs 4-bit adder-accumulator for direct digital synthesis,” IEEE Journal of Solid State Circuits, Vol. SC-23, No. 2, April 1988, pp. 573–580.

    Article  Google Scholar 

  3. E. Delhaye, C. Rocher, M. Fichelson and L. Lecuru, “A 3.0 ns, 350 mW, 8x8 Booth’s multiplier,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1987, pp. 249–252.

    Google Scholar 

  4. H. Singh, R. Sadler, J. Irvine and G. Gorder, “GaAs low-power parallel multipliers for a high-speed digital signal processor,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1987, pp. 253–256.

    Google Scholar 

Gate Arrays

  1. K. Kajii, Y. Watanabe, M. Suzuki, I. Hanyu, M. Kosugi, K. Odani, T. Mimura and M. Abe,” A 40-ps high electron mobility transistor 4. IK gate array,” IEEE Journal of Solid State Circuits, Vol. SC-23, No. 2, April 1988, pp. 485–489.

    Article  Google Scholar 

  2. A. Peczalski, G. Lee, W.R. Betten, H. Somal, M. Plagens, J. R. Biard, I. Burrows, B. K. Gilbert, R. L. Thompson, B. A. Naused, S. M. Karwoski, M. L. Samson and S. K. Zahn, “A 6K GaAs gate array with fully functional LSI personalization,” IEEE Journal of Solid State Circuits, Vol. SC-23, No. 2, April 1988, pp. 581–590.

    Article  Google Scholar 

  3. G. Lee, S. Canaga, B. Terrell and I. Deyhimy, “A high performance GaAs gate array family,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1989, pp. 33–36.

    Google Scholar 

  4. Y. Yamauchi, O. Nakajima, K. Nagata, H. Ito and T. Ishibashi, “A 34.8 GHz static frequency divider using AlGaAs/GaAs HBTs,” IEEE Integrated Circuit Symposium Technical Digest, 1989, pp. 121–124.

    Google Scholar 

  5. J. Parton, P. Topham, D. Taylor, N. Hiams, A. Holden and R Goodfellow, “An HBT programmable hexadecimal counter IC clocked at 2.6GHz,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1989, pp. 61–64.

    Google Scholar 

  6. K. Kobayashi, R. Esfandiari, A. Oki, D. Umemoto, J. Camou and M. Kim, “GaAs heterojunction bipolar transistor MMIC DC to 10 GHz direct-coupled feedback amplifier,” IEEE GaAs Integrated Circuit Symposium Technical Digest, 1989, pp. 79–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wing, O. (1990). Subsystems Design. In: Gallium Arsenide Digital Circuits. The Kluwer International Series in Engineering and Computer Science, vol 109. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1541-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1541-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8826-8

  • Online ISBN: 978-1-4613-1541-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics