Skip to main content

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 109))

  • 118 Accesses

Abstract

GaAs transistors have two distinct antages over Si transistors: speed and power. For the same power dissipation, a GaAs circuit is usually faster, and at the same speed, the power in a GaAs circuit is usually lower. The speed advantage comes from the fact that the peak average electron velocity in intrinsic or doped GaAs is several times higher than in Si and it is reached at a much lower value of electric field, and hence with a lower supply voltage. Since the current density in a device is proportional to the electron velocity, the amount of current available to charge or discharge a capacitor in a GaAs device is much larger and the switching speed is therefore higher than in a Si device with the same dimension. In addition, a GaAs field effect transistor does not have any pn-junction around its drain and source terminals and therefore the interelectrode capacitance in a GaAs device is much smaller. Smaller capacitance and higher current density, combined with a smaller voltage swing in a GaAs transistor, contribute to the realization of low-power, high-speed circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hahive, W. Clemetson, P. O’Connor, A. Dori, and S. C. Shunk, “A GaAs DCFL Chip Set for Multiplexer and Demultiplexer Applications at Gigabit/sec Data Rates,” IEEE GaAs Integrated Circuit Symposium Technical Digest, pp. 7–10, October 1984.

    Google Scholar 

  2. H. Nakamura, K. Tanaka, K. Inokuchi, T. Saito, Y. Kawakami, Y. Sano, M. Akiyama and K. Kaminishi, “2 GHz multiplexer and Demultiplexer Using DCFL/SBFL Circuit and the Precise Threshold Voltage Control Process,” IEEE GaAs Integrated Circuit Symposium Technical Digest, pp. 151–4, October 1986.

    Google Scholar 

  3. M. McDonald and G. McCormack, “A 12:1 Multiplexer and Demultiplexer Chip Set for Use in a Fiber Optic Communication System,” IEEE GaAs Integrated Circuit Symposium Technical Digest, pp. 229–32, October 1986.

    Google Scholar 

  4. T. Suzuki. S. Shikata, S. Nakajima, N. Hirakata, Y. Mikamura and T. Sugawa, “GaAs IC Family for High Speed Optical Communication Systems,” IEEE GaAs Integrated Circuit Symposium Technical Digest, pp. 225–8, October 1986.

    Google Scholar 

  5. N. Kotera, K. Yamashita, Y. Hatta, T. Kinoshita, M. Miyakazi and M. Maeda, “Laser Driver and Receiver Amplifiers for 2.4 Gb/s Optical Transmission Using WSi-Gate GaAs MESFETs,” IEEE GaAs Integrated Circuit Symposium Technical Digest, pp. 103–6, October 1987.

    Google Scholar 

  6. S. Notomi, Y. Asano, M. Kosugi, T. Nagata, K. Kosemura, M. Ono, N. Kobayashi, H. Ishiwari, K. Odani, T. Mimura and M. Abe, “A High Speed 1K x 4-Bit Static RAM Using 0.5 µm-gate HEMTs,” IEEE GaAs Integrated Circuit Symposium Technical Digest, pp. 177–80, October 1987.

    Google Scholar 

  7. M. Ino, H. Suto, H. Kata and H. Yamazaki, “A 1.2 ns GaAs 4kb Read Only Memory Fabricated by 0.5 µm-gate BP-SAINT,” IEEE GaAs Integrated Circuit Symposium Technical Digest, pp. 189–92, October 1987.

    Google Scholar 

  8. R. V. Gauthier, J. Weissman and B. E. Peterson, “A 150 MOPS GaAs 8-Bit Slice Processor,” IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 32–3, February 1988.

    Google Scholar 

  9. E. Delhaye, C. Rocher, M. Fichelson and I. Lecuru, “A 3.0 ns, 350 nW 8 x 8 Booth’s Multiplier,” IEEE GaAs Integrated Circuit Symposium Technical Digest, pp. 249–52, October 1987.

    Google Scholar 

  10. V. M. Milutinovic and D. A. Fura, Gallium Arsenide Computer Design. Los Angeles, CA: IEEE Computer Society Press, 1988.

    Google Scholar 

  11. S. Sze, Physics of Semiconductor Devices. New York, NY: Wiley, 1981.

    Google Scholar 

  12. J. G. Ruch and G. S. Kino, “Measurements of Velocity-Field Characteristics of GaAs,” Applied Physics Letters, Vol. 10, p.40, 1967.

    Article  Google Scholar 

  13. F. F. Fang and A. B. Fowler, “Hot Electron Effects and Saturation velocities in Silicon Inverse Layers,” Journal of Applied Physics, pp. 1825–31, March 1970.

    Google Scholar 

  14. J. G. Ruch, “Electron Dynamics in Short Channel FET,” IEEE Transactions on Electron Devices, Vol. ED-19, pp. 652–4, May 1972.

    Article  Google Scholar 

  15. K. Yamasaki, N. Sato, and M. Hirayama, “Below 10ps Gate Operation with Buried-P-Layer SAINT FETs,” Electronics Letters, Vol. 20, pp. 1029–31, December 1984.

    Article  Google Scholar 

  16. N. D. Cirillo, M. S. Shur, and J. K. Abrokwah, “Inverted GaAs/AlGaAs Modulation-Doped Field-Effect Transistors with Extremely High Transconductance,” IEEE Electron Device Letters, Vol EDL-7, pp. 71–2, 1986.

    Article  Google Scholar 

  17. H. Hida, A. Okamoto, H. Toyoshima, and K. Ohata, “A High-Current Drivability i-AlGaAs/n-GaAs Doped Channel MIS-Like FET (DMT),” IEEE Electron Device Letters, Vol. EDL-7, pp. 625–6, November 1986.

    Article  Google Scholar 

  18. K. C. Wang, O. M. Asbeck, M. F. Chang, D. L. Miller, and G. J. Sullivan, “High-Speed MSI Current-Mode Logic Circuit Implemented with Heterojunction Bipolar Transistors,” IEEE GaAs Integrated Circuit Symposium Technical Digest, pp. 159–62, October 1986.

    Google Scholar 

  19. D. Ferry (Ed.), GaAs Technology. Indianapolis, IN: SAMS, 1985.

    Google Scholar 

  20. R. Soares, J. Graffeuil and J. Obregon (Eds.), Applications of GaAs MESFETs. Dedham, MA: Artech House, 1983.

    Google Scholar 

  21. K. de Graaf and K. Fawcett, “GaAs Technology for Analog-to-Digital Conversion (Invited),” IEEE GaAs Integrated Circuit Symposium Technical Digest, pp. 205–9, October 1986.

    Google Scholar 

  22. J. Corcoran, K. Poulton, and T. Hornak, “A 1GHz 6b ADC System,” IEEE International Solid State Circuits Conference Technical Digest, pp. 102–3, February 1987.

    Google Scholar 

  23. IEEE GaAs Integrated Circuit Symposium Technical Digest. IEEE, 445 Hoes Lane, Piscataway, N.J. 08854.

    Google Scholar 

  24. IEEE International Solid State Circuits Conference Technical Digest. IEEE 445 Hoes Lane, Piscataway, N.J. 08854.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wing, O. (1990). Introduction. In: Gallium Arsenide Digital Circuits. The Kluwer International Series in Engineering and Computer Science, vol 109. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1541-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1541-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8826-8

  • Online ISBN: 978-1-4613-1541-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics