Skip to main content

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 88))

  • 116 Accesses

Abstract

The dynamic CMOS circuit techniques present us with an attractive alternative to static CMOS circuits. It is possible to achieve higher density and speed with these techniques at the expense of a slight increase in the power requirement. In this chapter we will explore the testability of combinational dynamic CMOS circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramovici, P. R. Menon, and D. T. Miller, “Checkpoint faults are not sufficient faults for test generation,” IEEE Trans. Comput., vol. C-35, pp. 769–771, Aug. 1986.

    Article  Google Scholar 

  2. P. Agrawal and S. M. Reddy, “Test generation at MOS level,” in Proc. Int. Conf. Computers, Systems & Signal Proc., Bangalore, India, Dec. 1984.

    Google Scholar 

  3. D. B. Armstrong, “On finding a nearly minimal set of fault detection tests for combinational logic nets,” IEEE Trans. Electron. Comput., pp. 66–73, Feb. 1966.

    Google Scholar 

  4. D. B. Armstrong, “A deductive method for simulating faults in logic circuits,” IEEE Trans. Comput., vol. C-21, pp. 464–471, May 1972.

    Article  Google Scholar 

  5. Z. Barzilai et al., “Accurate fault modeling and efficient simulation of SCVS circuits,” in Proc. Int. Conf. Computer Design, Port Chester, NY, pp. 42–47, Oct. 1984.

    Google Scholar 

  6. Z. Barzilai et al., “Accurate fault modeling and efficient simulation of differential CVS circuits,” in Proc. Int. Test Conf., Philadelphia, PA, pp. 722–729, Oct. 1985.

    Google Scholar 

  7. K. W. Chiang and Z. G. Vranesic, “Test generation for MOS complex gate networks,” in Proc. Int. Symp. Fault-Tolerant Comput., Santa Monica, CA, pp. 149–157, June 1982.

    Google Scholar 

  8. K. W. Chiang and Z. G. Vranesic, “On fault detection in CMOS logic networks,” in Proc. Design Automation Conf., Miami Beach, FL, pp. 50–56, June 1983.

    Google Scholar 

  9. V. Friedman and S. Liu, “Dynamic logic CMOS circuits,” IEEE J. Solid-State Circuits, vol. SC-19, no. 2, pp. 263–266, Apr. 1984.

    Article  Google Scholar 

  10. H. Fujiwara and T. Shimono, “On the acceleration of test generation algorithms,” in Proc. Int. Symp. Fault-Tolerant Comput., Milan, Italy, pp. 98–105, June 1983.

    Google Scholar 

  11. P. Goel, “An implicit enumeration algorithm to generate tests for combinational logic circuits,” IEEE Trans. Comput., vol. C-30, pp. 215–222, Mar. 1981.

    Article  Google Scholar 

  12. N. F. Goncalves and H. J. De Man, “NORA: A racefree dynamic CMOS technique for pipelined logic structures,” IEEE J. Solid-State Circuits, vol. SC-18, no. 3, pp. 261–266, June 1983.

    Article  Google Scholar 

  13. L. G. Heller et al., “Cascode voltage switch logic: A differential CMOS logic family,” in Proc. Int. Solid-State Circuits Conf., pp. 16–17, Feb. 1984.

    Google Scholar 

  14. I. S. Hwang and A. L. Fisher, “Ultrafast compact 32-bit CMOS adders in multiple-output domino logic,” IEEE J. Solid-State Circuits, vol. 24, no. 2, pp. 358–369, Apr. 1989.

    Article  Google Scholar 

  15. N. K. Jha, “Testing for multiple faults in domino-CMOS logic circuits,” IEEE Trans. CAD, vol. 7, pp. 109–116, Jan. 1988.

    Google Scholar 

  16. N. K. Jha, “Fault detection in CVS parity trees: Application to SSC CVS parity and two-rail checkers,” in Proc. Int. Symp. Fault-Tolerant Comput., Chicago, IL, pp. 407–414, June 1989.

    Google Scholar 

  17. N. K. Jha, “Testing of differential cascode voltage switch one-count generators,” IEEE J. Solid-State Circuits, (in press).

    Google Scholar 

  18. R. H. Krambeck, C. M. Lee, and H.-F. S. Law, “Highspeed compact circuits with CMOS,” IEEE J. Solid-State Circuits, vol. SC-17, no. 3, pp. 614–619, June 1982.

    Article  Google Scholar 

  19. S. Kundu and S. M. Reddy, “Robust tests for parity trees,” in Proc. Int. Test Conf., Washington, D.C., pp. 680–687, Sept. 1988.

    Google Scholar 

  20. C. M. Lee and E. W. Szeto, “Zipper CMOS,” IEEE Circuits & Devices, pp. 10-17, May 1986.

    Google Scholar 

  21. N. Ling and M. A. Bayoumi, “An efficient technique to improve NORA CMOS testing,” IEEE Trans. Circuits & Systems, vol. CAS-34, no. 12, pp. 1609–1611, Dec. 1987.

    Google Scholar 

  22. S. R. Manthani and S. M. Reddy, “On CMOS totally self-checking circuits,” in Proc. Int. Test Conf., Philadelphia, PA, pp. 866–877, Oct. 1984.

    Google Scholar 

  23. B. Montoye, “Testing scheme for differential cascode voltage switch circuits,” IBM Tech. Disclosure Bulletin, vol. 27, no. 10B, pp. 6148–6152, Mar. 1985.

    Google Scholar 

  24. V. G. Oklobdzija and P. G. Kovijanic, “On testability of CMOS-domino logic,” in Proc. Int. Symp. Fault-Tolerant Comput., Orlando, FL, pp. 50–55, June 1984.

    Google Scholar 

  25. J. A. Pretorius, A. S. Shubat, and C. A. T. Salama, “Latched domino CMOS logic,” IEEE J. Solid-State Circuits, vol. SC-21, no. 4, pp. 514–522, Aug. 1986.

    Article  Google Scholar 

  26. S. M. Reddy, V. D. Agrawal, and S. K. Jain, “A gate-level model for CMOS combinational logic circuits with application to fault detection,” in Proc. Design Automation Conf., Albuquerque, NM, pp. 504–509, June 1984.

    Google Scholar 

  27. M. K. Reddy, S. M. Reddy, and P. Agrawal, “Transistor level test generation for MOS circuits,” in Proc. Design Automation Conf., Las Vegas, pp. 825–828, June 1985.

    Google Scholar 

  28. J. P. Roth, “Diagnosis of automata failures: A calculus and a method,” IBM J. Res. & Dev., vol. 10, pp. 278–291, July 1966.

    Article  MATH  Google Scholar 

  29. D. R. Schertz and G. Metze, “A new representation for faults in combinational digital circuits,” IEEE Trans. Comput., vol. C-21, pp. 858–866, Aug. 1972.

    Article  Google Scholar 

  30. P. R. Schneider, “On the necessity to examine D-chains in diagnostic test generation — an example,” IBM J. Res. & Dev., vol. 11, p. 114, Jan. 1967.

    Article  Google Scholar 

  31. M. H. Schultz, E. Trischler, and T. M. Sarfert, “SOCRATES: A highly efficient ATPG system,” IEEE Trans. CAD, vol. 7, pp. 126–137, Jan. 1988.

    Google Scholar 

  32. F. F. Sellers, M. Y. Hsiao, and C. L. Bearnson, “Analyzing errors with the Boolean difference,” IEEE Trans. Comput., vol. C-17, pp. 676–683, July 1968.

    Article  Google Scholar 

  33. S. Seshu, “On an improved diagnosis program,” IEEE Trans. Electron. Comput., vol. EC-14, pp. 76–79, Feb. 1965.

    Article  Google Scholar 

  34. H.-C. Shih and J. A. Abraham, “Transistor-level test generation for physical failures in CMOS circuits,” in Proc. Design Automation Conf., Las Vegas, pp. 243–249, June-July 1986.

    Google Scholar 

  35. K. To, “Fault folding for irredundant and redundant combinational circuits,” IEEE Trans. Comput., vol. C-22, pp. 1008–1015, Nov. 1973.

    Article  MathSciNet  Google Scholar 

  36. H.-J. Wunderlich and W. Rosenstiel, “On fault modeling for dynamic MOS circuits,” in Proc. Design Automation Conf., Las Vegas, pp. 540–546, June-July 1986.

    Google Scholar 

Additional Reading

  1. D. S. Ha and S. M. Reddy, “On the design of testable domino PLAs,” in Proc. Int. Test Conf., Philadelphia, PA, pp. 567–573, Oct. 1985.

    Google Scholar 

  2. V. G. Oklobdzija and R. K. Montoye, “Design-performance trade-offs in CMOS-domino logic,” IEEE J. Solid-State Circuits, vol. SC-21, no. 2, pp. 304–306, Apr. 1986.

    Article  Google Scholar 

  3. J. A. Pretorius, A. S. Shubat, and C. A. T. Salama, “Charge distribution and noise margins in domino CMOS logic,” IEEE Trans. Circuits & Systems, vol. CAS-33, no. 8, pp. 786–793, Aug. 1986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Jha, N.K., Kundu, S. (1990). Test Generation for Dynamic CMOS Circuits. In: Testing and Reliable Design of CMOS Circuits. The Kluwer International Series in Engineering and Computer Science, vol 88. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1525-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1525-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8818-3

  • Online ISBN: 978-1-4613-1525-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics