Skip to main content
  • 36 Accesses

Summary

Cellular calcium homeostasis is disturbed during brief periods of ischemia, with free cytosolic Ca ([Ca2+]i) rising severalfold within 10–15 minutes (or even sooner). Nevertheless, the myocardial cells’ ability to regulate Ca recovers quickly after reperfusion, unlike the lingering depression of contractile function known as stunning. This brief commentary considers the hypothesis that the rise in cell calcium during ischemia and during early reperfusion leaves behind stunning as an unwelcome legacy. This idea by no means excludes the involvement of other factors, such as free radicals; instead, it suggests a possible common pathway for cell injury by a variety of specific agents. A provocative feature of the formulation is the idea that the crucial lesion in stunning occurs at the level of the contractile proteins, rather than more proximally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braunwald E, Kloner RA. Myocardial reperfusion: A double-edged sword? J Clin Invest 1985; 76: 1713–1719.

    Article  PubMed  CAS  Google Scholar 

  2. Marban E, Koretsune Y, Corretti M, Chacko VP, Kusuoka H. Calcium and its role in myocardial cell injury during ischemia and reperfusion. Circulation 1989;80:IV17–IV22.

    PubMed  CAS  Google Scholar 

  3. Hochachka PW. Defense strategies against hypoxia and hypothermia. Science 1986; 231: 234–241.

    Article  PubMed  CAS  Google Scholar 

  4. Malenka RC, Kauer JA, Zucker RS, Nicoll RA. Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 1988; 242: 81–884.

    Article  PubMed  CAS  Google Scholar 

  5. Regehr WG, Connor JA, Tank DW. Optimal imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation. Nature 1989; 341: 533–536.

    Article  PubMed  CAS  Google Scholar 

  6. Marban E, Kitakaze M, Koretsune Y, Yue DT, Chacko VP, Pike MM. Quantification of [Ca2+l in perfused hearts: Critical evaluation of the 5F-BAPTA/NMR method as applied to the study of ischemia and reperfusion. Circ Res 1990; 66: 1255–1267.

    PubMed  CAS  Google Scholar 

  7. Marban E, Kitakaze M, Kusuoka H, Porterfield JK, Yue DT, Chacko VP. Intracellular free calcium concentration measured with 19F NMR spectroscopy in intact ferret hearts. Proc Natl Acad Sci USA 1987; 84: 6005–6009.

    Article  PubMed  CAS  Google Scholar 

  8. Steenbergen C, Murphy E, Levy L, London RE. Elevation in cystolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 1987; 60: 700–707.

    PubMed  CAS  Google Scholar 

  9. Lee H-C, Smith N, Mohabir R, Clusin WT. Cytosolic calcium transients from the beating mammalian heart. Proc Natl Acad Sci USA 1987; 252: C441 — C449.

    Google Scholar 

  10. Kihara Y, Grossman W, Morgan JP. Direct measurement of changes in intracellular calcium transients during hypoxia, ischemia, and reperfusion of the intact mammalian heart. Circ Res 1989; 65: 1029–1044.

    PubMed  CAS  Google Scholar 

  11. Kusuoka H, Koretsune Y, Chacko VP, Weisfeldt ML, Mar-ban E. Excitation-contraction coupling in postischemic myocardium: Does failure of activator Cat’ transients underlie “stunning” ? Circ Res 1990; 66: 1268–1276.

    PubMed  CAS  Google Scholar 

  12. Kusuoka H, Porterfield JK, Weisman HF, Weisfeldt ML, Marban E. Pathophysiology and pathogenesis of stunned myocardium: Depressed Ca2+ activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest 1987; 79: 950–961.

    Article  PubMed  CAS  Google Scholar 

  13. Kuroda H, Ishiguro S, Mori T. Optimal calcium concentration in the initial reperfusate for post-ischemic myocardial performance (calcium concentration during reperfusion). J Mol Cell Cardiol 1986; 18: 625–633.

    Article  PubMed  CAS  Google Scholar 

  14. Kitakaze M, Weisfeldt ML, Marban E. Acidosis during early reperfusion prevents myocardial stunning in perfused hearts. J Clin Invest 1988; 82: 920–927.

    Article  PubMed  CAS  Google Scholar 

  15. Kitakaze M, Weisman HF, Marban E. Contractile dysfunction and ATP depletion after transient calcium overload in perfused ferret hearts. Circulation 1988; 77: 685–695.

    Article  PubMed  CAS  Google Scholar 

  16. Koretsune Y, Marban E. Cell calcium in the pathophysiology of ventricular fibrillation and in the pathogenesis of post-arrhythmic contractile dysfunction. Circulation 1989; 80: 369–379.

    Article  PubMed  CAS  Google Scholar 

  17. Olney J, Collins RC, Sloviter RS. Excitotoxic mechanisms of epileptic brain damage. In: Delgado-Escueta AV, Ward AA Jr., Woodbury DM, Porter RJ, eds. Advances in Neurology, Vol 44. New York, Raven Press, 1986: 857–877.

    Google Scholar 

  18. McKee EE, Cheung JY, Rannels DE, Morgan HE. Measurement of the rate of protein synthesis and compartmentation of heart phenylalanine. J Biol Chem. 1978; 253: 1030–1040.

    PubMed  CAS  Google Scholar 

  19. Kentish JC. The effects of inorganic phosphate and creatine phosphate on force production in skinned muscles from rat ventricle. J Physiol 1986; 370: 585–604.

    PubMed  CAS  Google Scholar 

  20. Bolli R. Mechanism of myocardial “stunning.” Circulation 1990; 82: 723–738.

    Article  PubMed  CAS  Google Scholar 

  21. Corretti MC, Koretsune Y, Chacko VP, Zweier JL, Marban E. Glycolytic inhibition and calcium overload as consequences of exogenously-generated free radicals in rabbit hearts. J Clin Invest 1991, in press.

    Google Scholar 

  22. Josephson RA, Silverman HS, Lakatta EG, Stern MD, Zweier JL. Study of the mechanisms of hydrogen peroxide and hydroxyl free radical induced cellular injury and calcium overload in cardiac myocytes. J Biol Chem. 1991; 266: 2354–2361.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Kluwer Academic Publishers

About this chapter

Cite this chapter

Marban, E. (1992). Pathogenetic Role for Calcium in Stunning?. In: Opie, L.H. (eds) Stunning, Hibernation, and Calcium in Myocardial Ischemia and Reperfusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1517-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1517-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-1793-7

  • Online ISBN: 978-1-4613-1517-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics