Advertisement

Calcium, Calcium Antagonists, Stunning, and Hibernation: An Overview

  • Winifred G. Nayler

Summary

The basic pathophysiology of stunning and hibernation differs according to the proposed role of calcium. In stunning, it is suggested that calcium overload plays a crucial role and therefore calcium antagonists may have a beneficial effect. By contrast, in hibernation, where there is an ongoing reduction in the contractile function of the myocardium, calcium antagonists may further depress the inotropic state. Ongoing research may reveal further interesting differences between stunning and hibernation.

Keywords

Sarcoplasmic Reticulum Calcium Antagonist Contractile Function Stun Myocardium Coronary Vasospasm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bolli R. Mechanism of myocardial ‘stunning.’ Circulation 1990; 82: 723–738.PubMedCrossRefGoogle Scholar
  2. Braunwald E, Kloner RA. The stunned myocardium: Prolonged postischaemic ventricular dysfunction. Circulation 1982; 66: 1146–1149.PubMedCrossRefGoogle Scholar
  3. Camici P, Araujo LI, Spinks T, et al. Increased uptake of 18Ffluorodeoxyglucose in postischaemic myocardium of patients with exercise-induced angina. Circulation 1986; 74: 81–88.PubMedCrossRefGoogle Scholar
  4. Chierchia S, Lazzari M, Freeman B, et al. Impairment of myocardial perfusion and function during painless myocardial ischemia. J Am Coll Cardiol 1983; 1: 924–930.PubMedCrossRefGoogle Scholar
  5. Christian TF, Behrenbeck T, Pellika PA, et al. Mismatch of left ventricular function and infarct size demonstrated by technetium-99m isonitrile imaging and hyperkinesia. J Am Coll Cardiol 1990; 16: 1632–1638.PubMedCrossRefGoogle Scholar
  6. Davies MJ. A macro and micro view of coronary vascular insult in ischaemic heart disease. Circulation 1990;82 (Suppl II): II38–II46.PubMedGoogle Scholar
  7. Feher JJ, Le Bolt WR, Manson NH. Differential effect of global ischaemia on the ryanodine-sensitive and ryanodine-insensitive calcium uptake of cardiac sarcoplasmic reticulum. Circ Res 1989; 65: 1400–1408.PubMedGoogle Scholar
  8. Fuster V, Stein B, Ambrose JA, et al. Atherosclerotic plaque rupture and thrombosis; evolving concepts. Circulation 1990;82 (Suppl II):II47–II59.PubMedGoogle Scholar
  9. Heyndrickx GR, Millard RW, McRitchie RJ, et al. Regional myocardial function and electrophysiological alterations after brief coronary artery occlusions in conscious dogs. J Clin Invest 1975; 56: 978–985.PubMedCrossRefGoogle Scholar
  10. Janero DR, Burghardt B. Antiperoxidant effects of dihydropyridine calcium antagonists. Biochem Pharmacol 1989; 38: 4344–4348.PubMedCrossRefGoogle Scholar
  11. Jennings RB, Murry CE, Steenbergen C Jr., Reimer KA. Development of cell injury in sustained acute ischaemia. Circulation 1990;82 (Suppl II):II2–II12.PubMedGoogle Scholar
  12. Kannel WB. Detection and management of patients with silent myocardial ischemia. Am Heart J 1989; 117: 221–226.PubMedCrossRefGoogle Scholar
  13. Kloner RA, Pryzklenk K, Patel B. Altered myocardial states: The stunned and hibernating myocardium. Am J Med 1989; 86 (Suppl A): A14–A22.CrossRefGoogle Scholar
  14. Krause SM, Jacobus WE, Becker LC. Alterations in sarcoplasmic reticulum calcium transport in the postischemic ‘stunned’ myocardium. Circ Res 1989; 65: 526–530.PubMedGoogle Scholar
  15. Kutryk MJB, Maddaford TG, Ramimiawan B, Pierce GN. Oxidation and membrane cholesterol alters active and passive transsarcolemmal calcium movement. Circ Res 1991; 68: 18–26.PubMedGoogle Scholar
  16. Lamping KA, Gross GJ. Improved recovery of myocardial segment function following a short coronary occlusion in dogs by nicorandil, a potent new antianginal agent, and nifedipine. J Cardiovasc Pharmacol 1985; 7: 158–166.PubMedCrossRefGoogle Scholar
  17. Lee HC, Mohabir R, Smith N, et al. Effect of ischaemia on calcium dependent fluorescence transients in rabbit heart containing indo I. Circulation 1988; 78: 1047–1059.PubMedCrossRefGoogle Scholar
  18. Limbruno U, Zucchi R, Ronca-Teston S, et al. Sarcoplasmic reticulum function in the ‘stunned’ myocardium. J Mol Cell Cardiol 1989; 21: 1063–1072.PubMedCrossRefGoogle Scholar
  19. Luscher TF. Endothelin: Key to coronary vasospasm. Circulation 1991; 83: 701–703.PubMedGoogle Scholar
  20. Marban E, Kitakaze M, Kusuoka H, et al. Intracellular free calcium concentration measured with 19FNMR spectroscopy in intact ferret hearts. Proc Natl Acad Sci USA 1987; 84: 6005–6009.PubMedCrossRefGoogle Scholar
  21. Marban E. Myocardial stunning and hibernation. The physiology behind colloquialisms. Circulation 1991; 83: 681–688.PubMedGoogle Scholar
  22. Mathias P, Kerin NZ, Blevins RD, et al. Coronary vasospasm as a cause of stunned myocardium. Am Heart J 1987; 113: 383–385.PubMedCrossRefGoogle Scholar
  23. McCord JM. Oxygen-derived free radicals in post-ischemic tissue injury. N Engl J Med 1985; 312: 159–163.PubMedCrossRefGoogle Scholar
  24. Nayler WG. Calcium antagonists and the stunned heart. In: Nayler WG, ed. The second generation of calcium antagonists. Berlin: Springer Verlag, 1991: 95–116.Google Scholar
  25. Nayler WG. Calcium antagonists and the hibernating myocardium. In: Nayler WG, ed. Second generation of calcium antagonists. Berlin: Springer Verlag, 1991: 117–128.Google Scholar
  26. Nixon JV, Brown CN, Smitherman TC. Identification of transient and persistent segmental wall motion abnormalities in patients with unstable angina by two-dimensional echocardiography. Circulation 1982; 65: 1497–1503.PubMedCrossRefGoogle Scholar
  27. Przyklenk K, Kloner RA. Nifedipine administered postreperfusion ablates the phenomenon of the ‘stunned’ myocardium. Am J Cardiol 1987; 60: 934–936.PubMedCrossRefGoogle Scholar
  28. Przyklenk K, Kloner RA. Effect of verapamil on postischaemic ‘stunned’ myocardium: Importance of timing of treatment. J Am Coll Cardiol 1988; 11: 614–623.PubMedCrossRefGoogle Scholar
  29. Przyklenk K, Ghafari GB, Eitzman DT, Kloner RA. Nifedipine administered after reperfusion ablates systolic contractile dysfunction of post-ischaemic ‘stunned’ myocardium. J Am Coll Cardiol 1989; 13: 1176–1183.PubMedCrossRefGoogle Scholar
  30. Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary artery bypass surgery for chronic stable angina. Circulation 1985; 72 (Suppl 5): V125–V135.Google Scholar
  31. Rahimtoola SH. The hibernating myocardium. Am Heart J 1989; 117: 211–221.PubMedCrossRefGoogle Scholar
  32. Rankin JS, Newman GE, Multibaier LN, et al. The effects of coronary revascularization on left ventricular function is ischemic heart disease. J Thorac Cardiovasc Surg 1985; 90: 818–832.PubMedGoogle Scholar
  33. Rardon DP, Cefali DC, Mitchell RD, et al. Digestion of cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles with Calpain II. Effects on Ca2+ release channel. Circ Res 1990; 67; 84–96.PubMedGoogle Scholar
  34. Schuster EH, Bulkley BA. Early post infarction angina. Ischemia at a distance and ischemia in the infarct zone. N Engl J Med 1981; 305: 1101–1105.PubMedCrossRefGoogle Scholar
  35. Steenbergen C, Murphy E, Levy L. London RE. Elevation of cytosolic free calcium concentration early in myocardial ischaemia in perfused rat heart. Circ Res 1987; 60: 700–707.PubMedGoogle Scholar
  36. Watts JA, Norris TA, London RE, et al. Effects of diltiazem on lactate, ATP, and cytosolic free calcium levels in ischemic hearts. J Cardiovasc Pharmacol 1990; 15: 44–49.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Winifred G. Nayler

There are no affiliations available

Personalised recommendations