Skip to main content

Part of the book series: Developments in Hematology and Immunology ((DIHI,volume 24))

Abstract

The discovery by C. Polge, U.A. Smith and A.S. Parkes in 1948, that glycerol would enable fowl spermatozoa to survive freezing to −70°C [1], initiated a phase of dramatic development in the application of what subsequently came to be called “cryobiology”. It is interesting to note, in the context of this paper, that the title of the paper describing that fundamental observation was “Revival of spermatozoa after vitrification and dehydration at low temperatures”; as we shall see, these experiments did not produce vitrification in the sense that is now meant — in fact, that method would now be termed the “classical freezing” approach. In this paper we shall consider the mechanisms by which the classical freezing method and vitrification seek to preserve the viability of cells, tissues and organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature (Lond) 1949; 164: 666.

    Article  CAS  Google Scholar 

  2. Smith AU. Biological effects of freezing and supercooling. Edward Arnold (Lond) 1961.

    Google Scholar 

  3. Lovelock JE. The haemolysis of human red blood cells by freezing and thawing. Biochim Biophys Acta (Amst) 1953; 10: 414–26.

    Article  CAS  Google Scholar 

  4. Lovelock JE. The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta (Amst) 1953; 11: 28–36.

    Article  CAS  Google Scholar 

  5. Lovelock JE. The protective action by natural solutes against haemolysis by freezing and thawing. Biochem J 1954; 56: 265–70.

    PubMed  CAS  Google Scholar 

  6. Lovelock JE. Haemolysis by thermal shock. Brit J Haemat 1955; 1: 117–29.

    Article  PubMed  CAS  Google Scholar 

  7. Mazur P, Rall WF, Rigopoulos N. The relative contributions of the fraction of unfrozen water and of salt concentration to the survival of slowly frozen human erythrocytes. Biophys J 1981; 36: 653–75.

    Article  PubMed  CAS  Google Scholar 

  8. Pegg DE, Diaper MP. On the mechanism of injury to slowly frozen erythrocytes. Biophys J 1988; 54: 471–88.

    Article  PubMed  CAS  Google Scholar 

  9. Mazur P, Rigopoulos N. Contributions of unfrozen fraction and of salt concentration to the survival of slowly frozen human erythrocytes: Influence of warming rate. Cryobiology 1983; 20: 274–89.

    Article  PubMed  CAS  Google Scholar 

  10. Mazur P, Cole KW. Influence of cell concentration on the contribution of unfrozen fraction and salt concentration to the survival of slowly frozen human erythrocytes. Cryobiology 1985; 22: 505–36.

    Article  Google Scholar 

  11. Mazur P, Cole KW. Roles of unfrozen fraction, salt concentration and changes in cell volume in the survival of frozen human erythrocytes. Cryobiology 1989; 26: 1–29.

    Article  PubMed  CAS  Google Scholar 

  12. Pegg DE, Diaper MP. The “unfrozen fraction” hypothesis of freezing injury to human erythrocytes: A critical examination of the evidence. Cryobiology 1989; 26: 30–43.

    Article  PubMed  CAS  Google Scholar 

  13. Pegg DE, Diaper MP. The effect of initial tonicity on freeze-thaw injury to human red cells suspended in solutions of sodium chloride. Cryobiology 1989; 26: 579–60.

    Article  Google Scholar 

  14. Mazur P. Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 1963; 47: 347–69.

    Article  PubMed  CAS  Google Scholar 

  15. Leibo SP. Preservation of mammalian cells and embryos by freezing. In: Simatos D, Strong DM, Turc JM (eds). Les Colloques de l’Institut National de la Santé et de la Recherche Médicale. 62. Cryoimuunologie. Paris: Inserm, 1977: 311–34.

    Google Scholar 

  16. Pegg DE, Jacobsen IA. Current status of cryopreservation of whole organs with particular reference to the kidney. In: Marberger M, Dreikorn K (eds). Renal preservation. Baltimore: Williams and Wilkins, 1983: 301–22.

    Google Scholar 

  17. Pegg DE. Ice crystals in tissues and organs. In: Pegg DE, Karow AM Jr (eds). The biophysics of organ cryopreservation. New York and London: Plenum Press, 1987: 117–40.

    Google Scholar 

  18. Jacobsen IA, Pegg DE, Starklint H, et al. Effect of cooling and warming rate on glycerolised rabbit kidneys. Cryobiology 1984; 21: 637–53.

    Article  PubMed  CAS  Google Scholar 

  19. Rubinsky B, Pegg DE. A mathematical model for the freezing process in biological tissue. Proc R Soc Lond B 1988; 234: 343–58.

    Article  PubMed  CAS  Google Scholar 

  20. Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at -196°C by vitrification. Nature (Lond) 1985; 313: 573–5.

    Article  CAS  Google Scholar 

  21. Elford BC, Walter CA. Effects of electrolyte composition and pH on the structure and function of smooth muscle cooled to -79°C in unfrozen media. Cryobiology 1972; 9: 82–100.

    Article  PubMed  CAS  Google Scholar 

  22. Jacobsen IA, Pegg DE, Wusteman MC, Robinson SM. Transplantation of rabbit kidneys perfused with glycerol solutions at 10°C. Cryobiology 1978; 15: 18–26.

    Article  PubMed  CAS  Google Scholar 

  23. Taylor MJ. Equilibrium approach to ice-free cryopreservation of corneas: Tolerance of endothelium to high concentrations of dimethyl sulphoxide. Cryobiology 1988; 25: 533.

    Google Scholar 

  24. Arnaud FG, Pegg DE. Cryopreservation of human platelets with propane-1,2diol. Cryobiology 1990; 27: 130–7.

    Article  PubMed  CAS  Google Scholar 

  25. Jacobsen IA, Pegg DE, Straklint H, Hunt CJ, Diaper MP. Introduction and removal of cryoprotectants with rabbit kidneys: Assessment by transplantation. Cryobiology 1988; 25: 285–99.

    Article  PubMed  CAS  Google Scholar 

  26. Rich SJ, Armitage WJ. Propane-1,2-diol as a potential component of a vitrification solution for corneas. Cryobiology 1990; 27: 42–54

    Article  PubMed  CAS  Google Scholar 

  27. Testart J. High pregnancy rate after early embryo freezing. Fertility and sterility 1986; 46: 268.

    PubMed  CAS  Google Scholar 

  28. Boutron P. Non-equilibrium formation of ice in aqueous solutions: Efficacy of polyalcohol solutions for vitrification. In: Pegg DE, Karow AM Jr (eds). The biophysics of organ cryopreservation. New York and London: Plenum Press, 1987: 201–36

    Google Scholar 

  29. Boutron P. Non-equilibrium formation of ice in aqueous solutions: Efficacy of polyalcohol solutions for vitrification. In: Pegg DE, Karow AM Jr (eds). The biophysics of organ cryopreservation. New York and London: Plenum Press, 1987: 201–36

    Google Scholar 

  30. Marsland TP, Evans S, Pegg DE. Dielectric measurements for the design of an electromagnetic rewarming system. Cryobiology 1987; 24: 311–23.

    Article  PubMed  CAS  Google Scholar 

  31. De Vries AL. Biological antifreeze agents. Ann Rev Physiol 1983; 45: 245.

    Article  Google Scholar 

  32. Fahy GM, MacFarlane DR, Angell CA, Meryman HT. Vitrification as an approach to cryopreservation. Cryobiology 1984; 21: 407–26.

    Article  PubMed  CAS  Google Scholar 

  33. Fahy GM. Biological effects of vitrification and devitrification. In: Pegg DE, Karow AM Jr (eds). The biophysics of organ cryopreservation. New York and London: Plenum Press, 1987: 265–97.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

Pegg, D.E., Diaper, M.P. (1990). Freezing Versus Vitrification; Basic Principles. In: Smit Sibinga, C.T., Das, P.C., Meryman, H.T. (eds) Cryopreservation and low temperature biology in blood transfusion. Developments in Hematology and Immunology, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1515-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1515-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8814-5

  • Online ISBN: 978-1-4613-1515-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics