Skip to main content

Vitrification as an Approach to Organ Cryopreservation: Past, Present, and Future

  • Chapter
Cryopreservation and low temperature biology in blood transfusion

Part of the book series: Developments in Hematology and Immunology ((DIHI,volume 24))

Abstract

The concept of preserving organs in a viable condition outside of the human body dates at least from 1812, when LeGallois first proposed that after death of the body the human head (and therefore the individual) could be kept alive by removing it and supporting it by normothermic artificial machine perfusion [1]. History, however, has gone instead in the direction of hypothermic organ preservation, which seems to be a better option for both biological and economic reasons. The subject of this paper still lies in the future, and that is “cryothermic” preservation, i.e., preservation of organs at temperatures below −100°C. The primary advantage of this approach, should it prove to be possible, is that preservation times should become indefinite at such temperatures, thereby opening up many new and significant opportunities in transplantation medicine. This paper reviews the many steps toward the goal of organ cryopreservation by vitrification which have been taken since the beginning of this field in 1980, and also provides a very brief sketch of the rather ironic history of this area of research.

Supported in part by grants (GM 17959 and BSRG 2507 RR05737) from the National Institutes of Health, Bethesda, MD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LeGallois CJJ. Experiences sur le principe de la vie, notamment sur celluides mouvements du coeur et sur la siege de ce principe: Suivies du rapport fait a la premiere classe de l’Institut sur Celles Relatives aux Mouvements du coeur. Paris: D’Hautel 1812.

    Google Scholar 

  2. Boyle R. New experiments and observations touching cold, or, an experimental history of cold, begun. London: for Richard Davis Bookseller 1683.

    Google Scholar 

  3. Hunter J. The works of John Hunter, F.R.S. with notes. Palmer JF (ed). London: Longman, Rees, Orme, Brown, Green, and Longman 1835; I: 284.

    Google Scholar 

  4. Luyet BJ. The vitrification of organic colloids and of protoplasm. Biodynamica 1937; 1: 1–14.

    Google Scholar 

  5. Angell CA, Goldstein M (comps). Dynamic aspects of structural change in liquids and glasses. New York: New York Acad Sci 1986.

    Google Scholar 

  6. Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 1949; 164: 666.

    Article  PubMed  CAS  Google Scholar 

  7. Lovelock JE. The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta 1953; 11: 28–36.

    Article  PubMed  CAS  Google Scholar 

  8. Smith AU. Biological effects of freezing and supercooling. London: Edward Arnold 1961.

    Google Scholar 

  9. Jacob SW. Studies in organ preservation by actual freezing and reduction of the freezing point. Cryobiology 1964; 1: 176–80.

    Article  PubMed  CAS  Google Scholar 

  10. Smith AU. Problems in the resuscitation of mammals from body temperatures below 0°C. Proc Roy Soc 1957; 147: 533–44.

    Article  CAS  Google Scholar 

  11. Pegg DE. Ice crystals in tissues and organs. In: Pegg DE, Karow AM Jr (eds). The biophysics of organ cryopreservation. New York: Plenum Press, 1987: 117–36.

    Google Scholar 

  12. Kanwisher JW. Histology and metabolism of frozen intertidal animals. Biol Bull (Woods Hole) 1959; 116: 258–64.

    Article  Google Scholar 

  13. Hamilton R, Lehr HB. Survival of small intestine after storage for seven days at -196°C. Cryobiology 1967; 3: 375.

    Google Scholar 

  14. Suda I, Kito K, Adachi C. Viability of long term frozen cat brain in vitro. Nature 1966; 212: 268–70.

    Article  PubMed  CAS  Google Scholar 

  15. Farrant J. Mechanism of cell damage during freezing and thawing and its prevention. Nature 1965; 205: 1284–7.

    Article  CAS  Google Scholar 

  16. Huggins CE. Preservation of organized tissues by freezing. Fed Proc 1965; (suppl 15) 24:190–5.

    CAS  Google Scholar 

  17. Luyet BJ. On the amount of liquid water remaining amorphous in frozen aqueous solutions. Biodynamica 1969; 10: 277–91.

    Google Scholar 

  18. Luyet BJ, Rapatz G. Patterns of ice formation in some aqueous solutions. Biodynamica 1958; 8: 1–68.

    CAS  Google Scholar 

  19. Rapatz G, Luyet BJ. Electron microscope study of erythrocytes in rapidly cooled syspensions containing various concentrations of glycerol. Biodynamica 1968; 10: 193–210.

    Google Scholar 

  20. Fahy GM, Harms WS, Karow AM Jr. Application of Farrant’s principle to preservation of mammalian kidney cortical slices. Cryobiology 1974; 11: 572.

    Article  Google Scholar 

  21. Fahy GM. Correlations between cryoinjury in mammalian systems and changes in the composition and properties of the extracellular millieu during freezing. Dissertation, Augusta: Medical College of Georgia, 1977.

    Google Scholar 

  22. Fahy GM. Analysis of “solution effects” injury: Cooling rate dependence of the functional and morphological sequellae of freezing in rabbit renal cortex protected with dimethyl sulfoxide. Cryobiology 1981; 18: 550–70.

    Article  PubMed  CAS  Google Scholar 

  23. Fahy GM. Inhibition of colloid cell swelling in rabbit kidney cortex by disodium glycerophosphate. Cryobiology 1979; 16: 35–42.

    Article  PubMed  Google Scholar 

  24. Fahy GM, Hornblower M, Williams H. An improved perfusate for hypothermic renal preservation. I. Initial in vitrooptimization based on tissue electrolyte transport. Cryobiology 1979; 16: 618.

    Article  Google Scholar 

  25. Boutron P. Stability of the amorphous state in the system water-1.2-propanediol. Cryobiology 1979; 16: 557–68.

    Article  PubMed  CAS  Google Scholar 

  26. Fahy GM. Analysis of “solution effects” injury: Rabbit renal cortex frozen in the presence of dimethyl sulfoxide. Cryobiology 1980; 17: 371–88.

    Article  PubMed  CAS  Google Scholar 

  27. Baxter SJ, Lathe GH. Biochemical effects on kidney of exposure to high concentrations of dimethyl sulfoxide. Biochem Pharmacol 1971; 30: 1079–91.

    Article  Google Scholar 

  28. Fahy GM, Levy DI, Ali SE. Some emerging principles underlying the physical properties, biological actions, and utility of vitrification solutions. Cryobiology 1987; 24: 196–213.

    Article  PubMed  CAS  Google Scholar 

  29. MacFarlane DR. Forsyth M. Recent insights on the role of cryoprotectants in vitrification. Cryobiology 1989; 26: 566–7.

    Article  Google Scholar 

  30. Boutron P. Non-equilibrium formation of ice in aqueous solutions: efficiency of polyalcohol solutions for vitrification. In: Pegg DE, Karow AM Jr (eds). The biophysics of organ cryopreservation. New York: Plenum Press, 1987; 201–28.

    Google Scholar 

  31. Fahy GM, Takahashi T, Meryman HT. Practical aspects of ice-free cryopreservation. In: Smit Sibinga CTh, Das PC, Greenwalt TJ (eds). Future developments in blood banking. Boston: Martinus Nijhoff, 1986: 111–22.

    Chapter  Google Scholar 

  32. Langis R, Steponkus PL. Characterization of the phase behavior of cryoprotectant mixtures and the minimum solute concentration required for vitrification. Cryobiology 1989; 26: 558.

    Article  Google Scholar 

  33. Forsyth M, MacFarlane DR. Homogeneous nucleation at high pressure in some aqueous solutions of cryoprotectant interest. Cryo-Letters 1989; 10: 13952.

    Google Scholar 

  34. Fahy GM, MacFarlane DR, Angell CA, Meryman HT. Vitrification as an approach to cryopreservation. Cryobiology 1984; 21: 407–26.

    Article  PubMed  CAS  Google Scholar 

  35. Fahy GM. Saur J, Williams RJ. Physical problems associated with the vitrification of large volumes. Cryobiology 1989;26:569-70

    Article  Google Scholar 

  36. Mehl P. Experimental dissection of devitrification in aqueous solutions of 1,3-butanediol. Cryobiology 1989; 26: 567–8.

    Article  Google Scholar 

  37. MacFarlane DR, Forsyth M. Devitrification and recrystallization of glass forming aqueous solutions. In: Pegg DE, Karow AM Jr (eds). The biophysics of organ cryopreservation. New York: Plenum Press, 1987: 237–63.

    Google Scholar 

  38. Boutron P, Mehl P. Theoretical prediction of devitrification tendency - determination of critical warming rates without using finite expansions. Cryobiology 1989; 26: 567.

    Article  Google Scholar 

  39. Williams RJ, Carnahan DL. Discussion: Fracture faces and other interfaces as ice nucleation sites. Cryobiology 1989; 26: 568.

    Article  Google Scholar 

  40. Fahy GM. Biological effects of vitrification and devitrification. In: Pegg DE, Karow AM Jr. (eds) The biophysics of organ cryopreservation. New York: Plenum Press, 1987: 265–97.

    Google Scholar 

  41. Angell CA, Senapati H. Crystallization and vitrification in cryoprotected aqueous systems. In: Pegg DE, Karow AM Jr. (eds) The biophysics of organ cryopreservation. New York: Plenum Press, 1987: 147–62.

    Google Scholar 

  42. Fahy GM. Vitrification. In: McGrath JJ, Diller KR (eds). Low temperature biotechnology: Emerging applications and engineering contributions. Chicago: Amer Soc Mech Eng, 1988: 113–46.

    Google Scholar 

  43. Rail WF. Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology 1987; 24: 387–402.

    Article  Google Scholar 

  44. Arav A, Bacci ML. Volume changes of pig oocytes after exposure to different cryoprotectants. Cryobiology 1989; 26: 543.

    Article  Google Scholar 

  45. Langis R, Steponkus PL. Cryopreservation of rye protoplasts by vitrification. Cryobiology 1989; 26: 575.

    Article  Google Scholar 

  46. James ER, Hodgson-Smith A, Smith B, et al. The essential role of vitrification in cryopreservation of parasitic helminths. Cryobiology 1989; 26: 575.

    Article  Google Scholar 

  47. Steponkus PL, Meyers SP, Lynch DV, et al. Cryopreservation of Drosophila melanogasterembryos. Cryobiology 1989; 26: 575.

    Article  Google Scholar 

  48. Fahy GM, Lilley TH, Linsdell H, Douglas M StJ, Meryman HT. Cryoprotectant toxicity and cryoprotectant toxicity reduction: In search of molecular mechanisms. Cryobiology 1989; 26: 537.

    Article  Google Scholar 

  49. Fahy GM, Kittrell JL, Severns M. A fully automated system for treating organs with cryoprotective agents. Cryobiology 1985; 22: 607–8.

    Google Scholar 

  50. Ruggera PS, Fahy GM. Rapid and uniform electromagnetic heating of aqueous cryoprotectant solutions from cryogenic temperatures. Cryobiology 1989; 26: 568.

    Article  Google Scholar 

  51. Fahy GM. Vitrification of multicellular systems and whole organs. Cryobiology 1987; 24: 580–1.

    Article  Google Scholar 

  52. Pegg DE, Diaper MP. The mechanism of cryoinjury in glycerol-treated rabbit kidneys. In: Pegg DE, Jacobsen IA, Halasz NA (eds). Organ preservation, basics and applied aspects. Lancaster: MTP Press, 1982: 389–93.

    Google Scholar 

  53. Jacobsen IA, Pegg DE, Starklint H, Hunt CJ, Barfoot P, Diaper MP. Introduction and removal of cryoprotective agents with rabbit kidneys: Assessment by transplantation. Cryobiology 1988; 25: 285–99.

    Article  PubMed  CAS  Google Scholar 

  54. Jacobsen IA. Cooling of rabbit kidneys permeated with glycerol to subzero temperatures. Cryobiology 1979; 16: 24–34.

    Article  PubMed  CAS  Google Scholar 

  55. Rudolph LE, Mandel S. Supercooling, intermittent perfusion, and high pressure oxygen in whole organ preservation. Transplantation 1967; 5: 115966.

    Google Scholar 

  56. Deshpande PJ, Jacob SW. Successful storage of kidneys at sub-zero temperatures. Surg Forum 1963; 14: 176–7.

    PubMed  CAS  Google Scholar 

  57. Fahy GM. Vitrification: A new approach to organ cryopreservation. In: Meryman HT (ed). Transplantation: Approaches to graft rejection. New York: Alan R. Liss, 1986: 305–35.

    Google Scholar 

  58. Halasz NA, Miller SH, Devin J. Some of the problems associated with the freezing and thawing of kidneys. Cryobiology 1970; 7: 163–7.

    Article  PubMed  CAS  Google Scholar 

  59. Karow AM Jr, Liu WP, Humphries AL Jr. Survival of dog kidneys subjected to high pressures: Necrosis of kidneys after freezing. Cryobiology 1970; 7: 122–8.

    Article  Google Scholar 

  60. Robertson RD, Deshpande P, Siegel L, Jacob SW. Studies on the function of the canine heart exposed to sub-zero temperatures. J Amer Med Assoc 1964; 187: 574–8.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

Fahy, G.M. (1990). Vitrification as an Approach to Organ Cryopreservation: Past, Present, and Future. In: Smit Sibinga, C.T., Das, P.C., Meryman, H.T. (eds) Cryopreservation and low temperature biology in blood transfusion. Developments in Hematology and Immunology, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1515-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1515-5_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8814-5

  • Online ISBN: 978-1-4613-1515-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics