Hormonal and Non-Hormonal Regulation of Ca2+ Current and Adenylate Cyclase in Cardiac Cells

  • Rodolphe Fischmeister
  • Pierre-François Mery
  • Alvin Shrier
  • Catherine Pavoine
  • Véronique Brechler
  • Françoise Pecker
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 116)


The influx of Ca2+ ions through transmembrane Ca2+ channels is fundamental in many aspects of cardiac function. Regulation of the heart beat by noradrenaline and acetylcholine (ACh) is in part mediated by the effects of these neurotransmitters on calcium current, ICa (1). β-adrenergic stimulation of ICa is mediated by a guanine-nucleotide binding protein, Gs (2), which triggers the activation of adenylate cyclase (AC) and in turn stimulates cAMP-dependent phosphorylation of Ca2+ channels (1,3). Gs has also been shown to directly activate Ca2+ channels (4). This latter mechanism, however, may play only a minor role in the physiological response to noradrenaline since the effects of β-adrenergic agonists on ICa were mimicked by external application of cAMP, its analogues or phosphodiesterase inhibitors (5), forskolin (6) [a direct activator of AC (7)], and by intracellular application of cAMP (8,9) or the catalytic subunit of cAMP-dependent protein kinase (PKA; ref. 8).


Adenylate Cyclase Calcium Current External Solution Maximal Stimulation Ventricular Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hartzell, H. C. Regulation of cardiac ion channels by catecholamines, acetylcholine, and second messengers. Prog. Biophys. Mol. Biol. 52: 165–247, 1989.CrossRefGoogle Scholar
  2. 2.
    Gilman, A. G. G proteins: transducers of receptor-operated signals. Ann. Rev. Biochem. 56: 615–649, 1987.PubMedCrossRefGoogle Scholar
  3. 3.
    Hofmann, F., Nastainczyk, W., Röhrkasten, A., Schneider, T. and Sieber, M. Regulation of the L-type calcium channel. Trends Pharmacol. Sci. 8: 393–398, 1987.CrossRefGoogle Scholar
  4. 4.
    Brown, A. M. and Birnbaumer, L. Direct G protein gating of ion channels. Am. J. Physiol. 254: H401–H410, 1988.PubMedGoogle Scholar
  5. 5.
    Tsien, R. W. Cyclic AMP and contractile activity in heart. Adv. Cycl. Nucl. Res. 8: 363–420, 1977.Google Scholar
  6. 6.
    Hartzell, H. C. and Fischmeister, R. Effect of forskolin and acetylcholine on calcium current in single isolated cardiac myocytes. Mol. Pharmacol. 32: 639–645, 1987.PubMedGoogle Scholar
  7. 7.
    Seamon, K. B. and Daly, J. W. Forskolin: its biological and chemical properties. Adv. Cycl. Nucl. Prot. Phosphor. Res. 20: 1–150, 1986.Google Scholar
  8. 8.
    Kameyama, M., Hofmann, F. and Trautwein, W. On the mechanism of β-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflügers Arch. 405: 285–293, 1985.PubMedCrossRefGoogle Scholar
  9. 9.
    Fischmeister, R. and Hartzell, H. C. Mechanism of action of acetylcholine on calcium current in single cells from frog ventricle. J. Physiol. Lond. 376: 183–202, 1986.PubMedGoogle Scholar
  10. 10.
    George, W. J., Polson, J. B., O’Toole, A. G. and Goldberg, N. Elevation of 3’,5’-cyclic monophosphate in rat heart after perfusion with acetylcholine. Proc. Natl. Acad. Sci. USA 66: 398–403, 1970.PubMedCrossRefGoogle Scholar
  11. 11.
    Flitney, F. W. and Singh, J. Evidence that cyclic GMP may regulate cyclic AMP metabolism in the isolated frog ventricle. J. Mol. Cell. Cardiol. 13: 963–979, 1981.PubMedCrossRefGoogle Scholar
  12. 12.
    Hartzell, H. C. and Fischmeister, R. Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 323: 273–275, 1986.PubMedCrossRefGoogle Scholar
  13. 13.
    Fischmeister, R. and Hartzell, H. C. Cyclic guanosine 3’,5’-monophosphate regulates the calcium current in single cells from frog ventricle. J. Physiol. Lond. 387: 453–472, 1987.PubMedGoogle Scholar
  14. 14.
    Levi, R. C., Alloatti, G. and Fischmeister, R. Cyclic GMP regulates the Ca-channel current in guinea pig ventricular myocytes. Pflügers ARch. 413: 685–687, 1989.PubMedCrossRefGoogle Scholar
  15. 15.
    Farah, A. E. Glucagon and the circulation. Pharmacol. Rev. 35: 181–217, 1983.PubMedGoogle Scholar
  16. 16.
    Chatelain, P., Robberecht, P., Waelbroeck, M., De Neef, P., Camus, J.-C., Nguyen Hu, A., Roba, J. and Christophe, J. Topographical distribution of the secretin-and VIP-stimulated adenylate cyclase system in the heart of five animal species. Pflügers Arch. 397: 100–105, 1983.PubMedCrossRefGoogle Scholar
  17. 17.
    Fischmeister, R. and Shrier, A. Interactive effects of isoprenaline, forskolin and acetylcholine on Ca2+ current in frog ventricular myocytes. J. Physiol. Lond. 417: 213–239, 1989.PubMedGoogle Scholar
  18. 18.
    Méry, P.-F., Pavoine, C., Brechler, V., Pecker, F. and Fischmeister, R. (Submitted for publication).Google Scholar
  19. 19.
    Pucéat, M., Lechêne, P., Clément, O., Pelosin, J.-M., Ventura-Clapier, R. and Vassort, G. (Submitted for publication).Google Scholar
  20. 20.
    Buxton, I. L. O. and Brunton, L. L. Action of the cardiac α1-adrenergic receptor. Activation of cyclic AMP degradation. J. Biol. Chem. 26: 6733–6737, 1985.Google Scholar
  21. 21.
    Pecker, F., Duvaldestin, P., Berthelot, P. and Hanoune, J. The adenylate cyclase system in human liver: characterization, subcellular distribution and hormonal sensitivity in normal or cirrhotic adult, and in foetal liver. J. Clin. Sci. 57: 313–325, 1979.Google Scholar
  22. 22.
    White, A.A. Separation and purification of cyclic nucleotides by alumina column chromatography. Meth. Enzymol. 38C: 41–46, 1974.PubMedCrossRefGoogle Scholar
  23. 23.
    Pollock, H. G., Hamilton, J. W., Rouse, J. B., Ebner, K. E. and Rawitch, A. B. Isolation of peptide hormones from the pancreas of the bullfrog (Rana catesbeiana). Amino acid sequences of pancreatic polypeptide, oxyntomodulin, and two glucagon-like peptides. J. Biol. Chem. 263: 9746–9751, 1988.PubMedGoogle Scholar
  24. 24.
    Hescheler, J., Kameyama, M. and Trautwein, W. On the mechanism of muscarinic inhibition of cardiac Ca current. Pflügers Arch. 407: 182–189, 1986.PubMedCrossRefGoogle Scholar
  25. 25.
    Farah, A. E. and Tuttle, R. Studies on the pharmacology of glucagon. J. Pharmacol. Exp. Ther. 129: 49–55, 1960.PubMedGoogle Scholar
  26. 26.
    Murad, F. and Vaughan, M. Effect of glucagon on rat adenyl cyclase. Biochem. Pharmacol. 18: 1053–1059, 1969.PubMedCrossRefGoogle Scholar
  27. 27.
    Clark, C. M., Waller, D., Kohalmi, D., Gardner, R., Clark, J., Levey, G. S., Wildenthal, K. and Allen, D. Evidence that cyclic AMP is not involved in the chronotropic action of glucagon in the adult mouse heart. Endocrinol. 99: 23–29, 1975.CrossRefGoogle Scholar
  28. 28.
    Wildenthal, K., Allen, D. O., Karlsson, J., Wakeland, J. R. and Clark, C. M. Responsiveness to glucagon in fetal hearts. Species variability and apparent disparities between changes in beating, adenylate cyclase activation, and cyclic AMP concentration. J. Clin. Inv. 57: 551–558, 1976CrossRefGoogle Scholar
  29. 29.
    Chernow, B., Zaloga, G. P., Malcom, D., Willey, S. C., Clapper, M. and Holaday, J. W. Glucagon’s chronotropic action is calcium dependent. J. Pharmacol. Exp. Ther. 241: 833–837, 1987.PubMedGoogle Scholar
  30. 30.
    MacLeod, K. M., Rodgers, R. L. and McNeill, J. H. Characterization of glucagon-induced changes in rate, contractility and cyclic AMP levels in isolated cardiac preparations of the rat and guinea pig. J. Pharmacol. Exp. Ther. 217: 798–804, 1981.PubMedGoogle Scholar
  31. 31.
    Kameyama, M., Hescheler, J., Hofmann, F. and Trautwein, W. Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. Pflügers Arch. 407: 123–128, 1986.PubMedCrossRefGoogle Scholar
  32. 32.
    Hayes, J. S., Brunton, L. L. and Mayer, S. E. Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin E1. J. Biol. Chem. 255: 5113–5119, 1980.PubMedGoogle Scholar
  33. 33.
    England, P. J. and Shahid, M. Effects of forskolin on contractile responses and protein phosphorylation in the isolated perfused rat heart. Biochem. J. 246: 687–695, 1987.PubMedGoogle Scholar
  34. 34.
    Bristow, M. R., Ginsburg, R., Strosberg, A., Montgomery, W. and Minobe, W. Pharmacology and inotropic potential of forskolin in the human heart. J. Clin. Invest. 74: 212–223, 1984.PubMedCrossRefGoogle Scholar
  35. 35.
    Rodger, I. W. and Shahid, M. Forskolin, cyclic nucleotides and positive inotropism in isolated papillary muscles of the rabbit. Brit. J. Pharmacol. 81: 151–159, 1984.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Rodolphe Fischmeister
    • 1
  • Pierre-François Mery
    • 1
  • Alvin Shrier
    • 1
    • 2
  • Catherine Pavoine
    • 3
  • Véronique Brechler
    • 3
  • Françoise Pecker
    • 3
  1. 1.Laboratoire de Physiologie Cellulaire Cardiaque, INSERM U-241Université de Paris-SudOrsayFrance
  2. 2.Department of PhysiologyMcGill UniversityMontrealCanada
  3. 3.INSERM U-99Hôpital Henri-MondorCréteilFrance

Personalised recommendations