Skip to main content

Hormonal and Non-Hormonal Regulation of Ca2+ Current and Adenylate Cyclase in Cardiac Cells

  • Chapter
Subcellular Basis of Contractile Failure

Abstract

The influx of Ca2+ ions through transmembrane Ca2+ channels is fundamental in many aspects of cardiac function. Regulation of the heart beat by noradrenaline and acetylcholine (ACh) is in part mediated by the effects of these neurotransmitters on calcium current, ICa (1). β-adrenergic stimulation of ICa is mediated by a guanine-nucleotide binding protein, Gs (2), which triggers the activation of adenylate cyclase (AC) and in turn stimulates cAMP-dependent phosphorylation of Ca2+ channels (1,3). Gs has also been shown to directly activate Ca2+ channels (4). This latter mechanism, however, may play only a minor role in the physiological response to noradrenaline since the effects of β-adrenergic agonists on ICa were mimicked by external application of cAMP, its analogues or phosphodiesterase inhibitors (5), forskolin (6) [a direct activator of AC (7)], and by intracellular application of cAMP (8,9) or the catalytic subunit of cAMP-dependent protein kinase (PKA; ref. 8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hartzell, H. C. Regulation of cardiac ion channels by catecholamines, acetylcholine, and second messengers. Prog. Biophys. Mol. Biol. 52: 165–247, 1989.

    Article  Google Scholar 

  2. Gilman, A. G. G proteins: transducers of receptor-operated signals. Ann. Rev. Biochem. 56: 615–649, 1987.

    Article  PubMed  CAS  Google Scholar 

  3. Hofmann, F., Nastainczyk, W., Röhrkasten, A., Schneider, T. and Sieber, M. Regulation of the L-type calcium channel. Trends Pharmacol. Sci. 8: 393–398, 1987.

    Article  CAS  Google Scholar 

  4. Brown, A. M. and Birnbaumer, L. Direct G protein gating of ion channels. Am. J. Physiol. 254: H401–H410, 1988.

    PubMed  CAS  Google Scholar 

  5. Tsien, R. W. Cyclic AMP and contractile activity in heart. Adv. Cycl. Nucl. Res. 8: 363–420, 1977.

    CAS  Google Scholar 

  6. Hartzell, H. C. and Fischmeister, R. Effect of forskolin and acetylcholine on calcium current in single isolated cardiac myocytes. Mol. Pharmacol. 32: 639–645, 1987.

    PubMed  CAS  Google Scholar 

  7. Seamon, K. B. and Daly, J. W. Forskolin: its biological and chemical properties. Adv. Cycl. Nucl. Prot. Phosphor. Res. 20: 1–150, 1986.

    CAS  Google Scholar 

  8. Kameyama, M., Hofmann, F. and Trautwein, W. On the mechanism of β-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflügers Arch. 405: 285–293, 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Fischmeister, R. and Hartzell, H. C. Mechanism of action of acetylcholine on calcium current in single cells from frog ventricle. J. Physiol. Lond. 376: 183–202, 1986.

    PubMed  CAS  Google Scholar 

  10. George, W. J., Polson, J. B., O’Toole, A. G. and Goldberg, N. Elevation of 3’,5’-cyclic monophosphate in rat heart after perfusion with acetylcholine. Proc. Natl. Acad. Sci. USA 66: 398–403, 1970.

    Article  PubMed  CAS  Google Scholar 

  11. Flitney, F. W. and Singh, J. Evidence that cyclic GMP may regulate cyclic AMP metabolism in the isolated frog ventricle. J. Mol. Cell. Cardiol. 13: 963–979, 1981.

    Article  PubMed  CAS  Google Scholar 

  12. Hartzell, H. C. and Fischmeister, R. Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 323: 273–275, 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Fischmeister, R. and Hartzell, H. C. Cyclic guanosine 3’,5’-monophosphate regulates the calcium current in single cells from frog ventricle. J. Physiol. Lond. 387: 453–472, 1987.

    PubMed  CAS  Google Scholar 

  14. Levi, R. C., Alloatti, G. and Fischmeister, R. Cyclic GMP regulates the Ca-channel current in guinea pig ventricular myocytes. Pflügers ARch. 413: 685–687, 1989.

    Article  PubMed  CAS  Google Scholar 

  15. Farah, A. E. Glucagon and the circulation. Pharmacol. Rev. 35: 181–217, 1983.

    PubMed  CAS  Google Scholar 

  16. Chatelain, P., Robberecht, P., Waelbroeck, M., De Neef, P., Camus, J.-C., Nguyen Hu, A., Roba, J. and Christophe, J. Topographical distribution of the secretin-and VIP-stimulated adenylate cyclase system in the heart of five animal species. Pflügers Arch. 397: 100–105, 1983.

    Article  PubMed  CAS  Google Scholar 

  17. Fischmeister, R. and Shrier, A. Interactive effects of isoprenaline, forskolin and acetylcholine on Ca2+ current in frog ventricular myocytes. J. Physiol. Lond. 417: 213–239, 1989.

    PubMed  CAS  Google Scholar 

  18. Méry, P.-F., Pavoine, C., Brechler, V., Pecker, F. and Fischmeister, R. (Submitted for publication).

    Google Scholar 

  19. Pucéat, M., Lechêne, P., Clément, O., Pelosin, J.-M., Ventura-Clapier, R. and Vassort, G. (Submitted for publication).

    Google Scholar 

  20. Buxton, I. L. O. and Brunton, L. L. Action of the cardiac α1-adrenergic receptor. Activation of cyclic AMP degradation. J. Biol. Chem. 26: 6733–6737, 1985.

    Google Scholar 

  21. Pecker, F., Duvaldestin, P., Berthelot, P. and Hanoune, J. The adenylate cyclase system in human liver: characterization, subcellular distribution and hormonal sensitivity in normal or cirrhotic adult, and in foetal liver. J. Clin. Sci. 57: 313–325, 1979.

    CAS  Google Scholar 

  22. White, A.A. Separation and purification of cyclic nucleotides by alumina column chromatography. Meth. Enzymol. 38C: 41–46, 1974.

    Article  PubMed  CAS  Google Scholar 

  23. Pollock, H. G., Hamilton, J. W., Rouse, J. B., Ebner, K. E. and Rawitch, A. B. Isolation of peptide hormones from the pancreas of the bullfrog (Rana catesbeiana). Amino acid sequences of pancreatic polypeptide, oxyntomodulin, and two glucagon-like peptides. J. Biol. Chem. 263: 9746–9751, 1988.

    PubMed  CAS  Google Scholar 

  24. Hescheler, J., Kameyama, M. and Trautwein, W. On the mechanism of muscarinic inhibition of cardiac Ca current. Pflügers Arch. 407: 182–189, 1986.

    Article  PubMed  CAS  Google Scholar 

  25. Farah, A. E. and Tuttle, R. Studies on the pharmacology of glucagon. J. Pharmacol. Exp. Ther. 129: 49–55, 1960.

    PubMed  CAS  Google Scholar 

  26. Murad, F. and Vaughan, M. Effect of glucagon on rat adenyl cyclase. Biochem. Pharmacol. 18: 1053–1059, 1969.

    Article  PubMed  CAS  Google Scholar 

  27. Clark, C. M., Waller, D., Kohalmi, D., Gardner, R., Clark, J., Levey, G. S., Wildenthal, K. and Allen, D. Evidence that cyclic AMP is not involved in the chronotropic action of glucagon in the adult mouse heart. Endocrinol. 99: 23–29, 1975.

    Article  Google Scholar 

  28. Wildenthal, K., Allen, D. O., Karlsson, J., Wakeland, J. R. and Clark, C. M. Responsiveness to glucagon in fetal hearts. Species variability and apparent disparities between changes in beating, adenylate cyclase activation, and cyclic AMP concentration. J. Clin. Inv. 57: 551–558, 1976

    Article  CAS  Google Scholar 

  29. Chernow, B., Zaloga, G. P., Malcom, D., Willey, S. C., Clapper, M. and Holaday, J. W. Glucagon’s chronotropic action is calcium dependent. J. Pharmacol. Exp. Ther. 241: 833–837, 1987.

    PubMed  CAS  Google Scholar 

  30. MacLeod, K. M., Rodgers, R. L. and McNeill, J. H. Characterization of glucagon-induced changes in rate, contractility and cyclic AMP levels in isolated cardiac preparations of the rat and guinea pig. J. Pharmacol. Exp. Ther. 217: 798–804, 1981.

    PubMed  CAS  Google Scholar 

  31. Kameyama, M., Hescheler, J., Hofmann, F. and Trautwein, W. Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. Pflügers Arch. 407: 123–128, 1986.

    Article  PubMed  CAS  Google Scholar 

  32. Hayes, J. S., Brunton, L. L. and Mayer, S. E. Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin E1. J. Biol. Chem. 255: 5113–5119, 1980.

    PubMed  CAS  Google Scholar 

  33. England, P. J. and Shahid, M. Effects of forskolin on contractile responses and protein phosphorylation in the isolated perfused rat heart. Biochem. J. 246: 687–695, 1987.

    PubMed  CAS  Google Scholar 

  34. Bristow, M. R., Ginsburg, R., Strosberg, A., Montgomery, W. and Minobe, W. Pharmacology and inotropic potential of forskolin in the human heart. J. Clin. Invest. 74: 212–223, 1984.

    Article  PubMed  CAS  Google Scholar 

  35. Rodger, I. W. and Shahid, M. Forskolin, cyclic nucleotides and positive inotropism in isolated papillary muscles of the rabbit. Brit. J. Pharmacol. 81: 151–159, 1984.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Borivoj Korecky Naranjan S. Dhalla

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fischmeister, R., Mery, PF., Shrier, A., Pavoine, C., Brechler, V., Pecker, F. (1990). Hormonal and Non-Hormonal Regulation of Ca2+ Current and Adenylate Cyclase in Cardiac Cells. In: Korecky, B., Dhalla, N.S. (eds) Subcellular Basis of Contractile Failure. Developments in Cardiovascular Medicine, vol 116. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1513-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1513-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8813-8

  • Online ISBN: 978-1-4613-1513-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics